US006353892B2

a2 United States Patent

10y Patent No.: US 6,353,892 B2

Schreiber et al. @#5) Date of Patent: *Mar. 5, 2002
(54) COPY PROTECTION OF DIGITAL IMAGES 5,638,513 A 6/1997 Ananda
TRANSMITTED OVER NETWORKS 5,710,834 A 1/1998 Rhoads
5715403 A 2/1998 Stefik
(75) Inventors: Daniel Schreiber; Andrew Goldman, 2:;42‘;7232 2 42‘; }ggg E(I)lweclll et al.
i 143 oads
both of Beit Shemesh (IL) 5748763 A 5/1008 Rhoads
o . . 57487783 A 5/1998 Rhoads
(73) Assignee: Alchemedia Ltd., Beit Shemesh (IL) 5758068 A 5/1998 Brand et al.
. 5,765,152 A 6/1998 Erick:
(*) Notice: Subject to any disclaimer, the term of this 5:768:426 A 6;1998 Rill(c)az(s)n
patent is extended or adjusted under 35 5801679 A 9/1998 McCain
U.S.C. 154(b) by 0 days. 5,809,160 A 9/1998 Powell et al.
5,822,436 A 10/1998 Rhoads
This patent is subject to a terminal dis- 5,832,119 A 11/1998 Rhoads
claimer. 5,835,722 A 11/1998 Bradshaw et al.
5838902 A 11/1998 Shin
5,841,886 A 11/1998 Rhoads
(21) Appl. No.: 09/731,544 5841978 A 11/1998 Rhoads
aa. 5850481 A 12/1998 Rhoads
(22) Filed: Dec. 5, 2000 5862260 A 1/1999 Rhoads
Related U.S. Application Data (List continued on next page.)
(60) Division of application No. 09/397,331, filed on Sep. 14, OTHER PUBLICATIONS
(1)8/9391’3%2170hﬁizdaoﬁoﬁg}l,u?t7wrllggéPart of application No. Chapter 3—Understanding Image Guardian—3 pages.
(30) Foreign Application Priority Data Chapter 3 —Understanding Web Referee—3 pages.
(List continued on next page.)
NOV. 16, 1998 (IL) evvoeveeeeeeeereeeseeeeee oo 127093 . .]
Dec. 30, 1998 (IL) wevveeveieeeeeeeeeeeeeeeees s 127869 Primary Examiner—Robert Beausoleil
ssistant Examiner—Bryce P. Bonzo
. Assi. Examiner—Bryce P. B
(51) Int. CL7 e GO6F 11/00 (74) Attorney, Agent, or Firm—Fenwick & West LLP
(52) US. Cl oot 713/201
(58) Field of Searchoorvoro 7130200, 201 7 ABSTRACT
. method for protecting digital images distributed over a
A method for p ing digital images distributed
(56) References Cited network, including the steps of receiving a request from a
U.S. PATENT DOCUMENTS client computer running a network browser, for an original
) layout page containing references to digital images therein,
4,405,829 A 971983 Rivest et al. parsing the original layout page for the references to digital
372%7282 2 1;/ 132(9) gﬁear images, generating a modified layout page from the original
5050213 A 9§1991 ShZZ; layout page by replacing at least one of the references to
5303370 A 4/1994 Brosh et al digital images in the original layout page with references to
5410598 A 4/1995 Shear ' substitute data, and sending the modified layout page to the
5,500,070 A 4/1996 Schull client computer. A system is also described and claimed.
5533124 A 7/1996 Smith et al.
5,636,292 A 6/1997 Rhoads 32 Claims, 15 Drawing Sheets

f—— usR ————————— cuenrcompruEs ——

82 802
OPEN WE PAGE IN WEB
BROWSER

RENDER WEB PAGE
WITH IMAGE

EXECUTE COMMAND TO
COPY IMAGE TO CUPBOARD
(E.G. PRINTSCREEN)

‘CALL 8TBLT TO EXTRACT
PIXEL DATA FO? COPYING
O CLPBOARD

REPLACE REQUESTED PIXEL
DATA WITH SUBSTITUTE DATA

"RETURN SUBSTITUTE BATA

1

PASTE FROM CLPBOARD:
UNABLE TO COPY
PROTECTED IMAGE

£
WRIE DATA TO CLIPEOARD

US 6,353,892 B2
Page 2

U.S. PATENT DOCUMENTS

5,870,544 A 2/1999 Curtis

5,872,915 A 2/1999 Dykes et al.

5,881,287 A * 3/1999 Mast .cooevreeerenniieennnnnen. 717/1
5,892,900 A 4/1999 Ginter et al.

5,905,505 A 5/1999 Lesk

5,982,931 A 11/1999 Ishimaruc.cceeeeeee. 382/218
5,991,399 A 11/1999 Graunke et al. 380/279
6,011,905 A 1/2000 Huttenlocher et al. 358/1
6,014,702 A 1/2000 King et al. 709/227
6,032,150 A 2/2000 Nguyenccceeeeee. 707/102

OTHER PUBLICATIONS

“Copysight”, http:/www.ip2.com.

“Copysight: Now You Can Product Your Website Content on
the Internet with Copysight’s Suite of Software and Busi-
ness Solutions”, (http://www.ip2.com), 1999.

Digimarc & Copyright Protection (http://www.digimarc.
com), 1999.

Digimarc & Copyright Protection (http://www.digimarc.
com), 1999.

“Digital Rights Management” http://www.intertrust.com.
“Safelmage”, http://www.safemedia.com.

“SiteShield” press release, http:/www.maximized.com/
press/960529-1.html.

“SiteShield” product details, http:/www.maximized.com/
products/siteshield/why.html.

“Softlock.Com™. http://www.softlock.com.

* cited by examiner

US 6,353,892 B2

Sheet 1 of 15

Mar. 5, 2002

U.S. Patent

1 3[Nsid
.| 40553004 Viva MOS53D0Ud VIVA
Jinuisens | k_2LL aLniusans| gt
et — 3und o2t — FAUNIWOD
dasmoyg gam | HANIWOO JISMORIE gIM
INID — INTTO
39V 8IM 404 g 39vd §3M O W
1SINS3Y dUH 901 _ 153NO3Y dLH 90l
" e, 2 N
m
el
P4
0
dIDYNYW 3SVAVIVA
NOILDIIOd o71 LSNMVIS NOUDIIONd
8z’ L T SIOVIAI
YINANOD 3LOWIY viva 3OVd 83Mm HIHIAOW AAOIICAINN
ainmsens [T QIGOW [T 39vd sam A daim >
ost — 2y, 1153003 dUH [~ S3OVd §IM
e’ gL~ ISV rit
Jovdeam [
SIDVII
ot -~ _v|+ QDTN
AINAIS 93M Z0L 8\,./
UININOD ¥IAITS
LANRAINI

/»8_

U.S. Patent Mar. 5, 2002 Sheet 2 of 15 US 6,353,892 B2

fe USER e CLENT COMPUTRR e INTERNET ——}* SERVER COMPUTER —|
202 204
| REGUEST CONNECTION TO \—d OPEN COMMUNICATION
WEB SERVER SocKer
06~
28| RequEsT wes PAGE FRoM 20 RECEIVE REQUEST
OPEN WEB PAGE IN WEB REQUEST FOR
BROWSER WEB SERVER USING WEB WEB PAGE FROM CLIENT
BROWSER
212 DOES WES PAGE
REFERENCE PROTECTED
IMAGES?
¥ VES
24 REPLACE REFERENCES TO
1 PROTECTED IMAGES WITH
REFERENCES TO SUBSTITUTE
DATA IN WEB PAGE
218 [RECEVE MODIFIED WEB 216
N~ PAGE WITH REFERENCES “— SENDMODIFIED WEB
TO SUBSTITUTE DATA FROM PAGE 1O CLIENT
SERVER
20 2 RECEVE REQUEST FOR
\—{ REQUEST SUBSTITUTE DATA 1 SUBSTITUTE DATA FROM
FROM WEB SERVER CLENT
s 24
RECEIVE SUBSTITUTE DATA | SEND SUBSTITUTE DATA
FROM WEB SERVER TO CUENT
230 \ ‘
28
VIEW WEB PAGE PROCESS SUBSTTUTE DATA
AND RENDER WEB PAGE
pi))
234 RECEIVE UNMQUIFIED WEB] SEND UNMODIFED WEB
N1 PAGEWITH REFERENCES TO PAGETO CLENT .J
UNPROTECTED IMAGES
2% 2% RECEIVE REQUEST FOR
| FEQUESTUNPROTECTED v UNPROTECTED IMAGE
IMAGE DATA FROM WEB
SERVER DATA
24\2_‘ RECEIVE UNPROTECTED 2 SEND UNPROTECTED
IMAGE DATA FROMWEB [IMAGE DATA TO CLIENT
SERVER
2 PROCESS UNPROTECTED
—
IMAGE DATA AND

RENDER WEB PAGE FIGURE 2

US 6,353,892 B2

Sheet 3 of 15

Mar. 5, 2002

U.S. Patent

€ RINSOI
. N.x. qnl NOM..
WALSAS 31 i NOLYINIOANI]
3114
pog — & JOVRAINI
,....,// 3sn
svavival, N SONILIIS -
SNLVLS NOILD3LO¥d R NOILOILORI |« | 80¢
Il i “~ o0¢
YILNdNOD ¥IANTS P AALNAINOD FLONWR]
S~ 0L LINJ3INI

/l\\om—

U.S. Patent

Mar. 5, 2002

Sheet 4 of 15

US 6,353,892 B2

fe USER 21— PROTECTION MANAGER COMPUTER =4 INTERNET ——*———— SERVER COMPUTER —
PROTECTION 2 D | opEN COMMUNCATON
LAUNCH 5| REQUEST CONNECTION T0
MANAGER T00L W SERVER SOCKET WITH PROTECTION
MANAGER COMPUTER
“0?) 408
410 RECEIVE REQUEST FOR
N\ REQUEST SERVER FILE SYSTEM FLE SYSTEM INEORVATON
INFORMATION EROM PROTECTON
MANAGER COMPUTER
44 42
U v SEND ALE SYSTEM
SYSTEM INFORMATION INFORMATON 10
PROTECTION MANAGER
COMPUTRR
a1
\—| DISPLAY SERVER FLE
SYSTEM INFORMATION)
k)]
418 !
D ,
SELECT FOLDERS 40 | REQUESTIMAGE INFORMATION 422 RECEVE REQUEST FORIMAGE
AND/ORFIES 5| AND CURRENT PROTECTION ~JAND CURRENT PROTECTION STATUS
STATUS INFORMATION FROM INFORMATION FROM PROTECTION
SERVER COMPUTER MANAGER COMPUTER
426 | RECEVE IMAGEINFORMATION 124 ["SEND REQUESTED IMAGE AND
\——{ AND CURRENT PROTECTION . \—{ CURRENT PROTECTION STATUS
STATUS INFORMATION FROM N INFORMATION TO PROTECTION
SERVER COMPUTER ' MANAGER COMPUTER
08
\—{ DISPLAY IMAGE INFORMATION
AND CURRENT PROTECTION
STATUS INFORMATION
£
. i]
42 RECEIVE EDITED IMAGE
EDIT IMAGE PROTECTION \Tiﬁf)"fgﬂ%”@mﬁgimw N —IPROTECTION STATUS
STATUS 0 SERVER COMPUTER INFORMATION FROM PROTECTION
MANAGER COMPUTER
43
\—{ UPDATE PROTECTION
STATUS DATABASE
440 4% | SEND UPDATED PROTECTION
C_| RECEIVE UPDATED PROTECTION —
STATUS INFORMATION TO
STATLS INFORMATION FROM 4 ROTECTON MANAGES
SERVER COMPUTER \
COMPUTER
| 7
42 | DISPLAY UPDATED '
PROTECTION STATUS
INFORMATION
FIGURE 4

S RINSDIA

US 6,353,892 B2

Sheet 5 of 15

Mar. 5, 2002

[

U.S. Patent

/ AOIVHIINIS I9Vd
IOVd 9IM AN 93IM DINVNAQ
AOLVIUNIHINY AN
D) AIANIddV
SIOVIAI v0S 1| HUM Ls3noR
a3Lo3aLoNd ™\
39V 9IM HLIM
801 205 </ @m_mzo%%_
_ ~
VIvQ
ALNLILSaNs —
AALNANOD
4/ L~
el @ 43071 //l.\\\ ra Eﬂ:o
@ ISINOR 0l
319vd 9IM v 3HIQON
\ QIHIGOW 39V 9IM
C L 39Vd 89IM
0zlL Al MILNAINOD AIHIAON HLIM
AFAIS ®mmzon_mm~_

/

0ol

U.S. Patent Mar. 5, 2002 Sheet 6 of 15 US 6,353,892 B2

I USER fe CUENT COMPUTER 44— |NTERNET ———*}+————— SERVER COMPUTER —

AN
« 1 & OPEN COMMUNICATION
“—1 REQUEST OONNECTION TO
WEB SERVER SOCKET WITH CLENT
606
608 610
OPEN ACTIVE SERVERPAGE | \—| REQUEST ACTIVE SERVER PAGE | RECEVE REQUEST FOR T
IN WEB BROWSER FROM SERVER /FRRCOT;\XEC SESVNTER PAGE
612 APPEND IDENTFIER TO
S~ REQUEST
) v
¢ [resuBMT ReqUEST IO
SERVER WITH APPENDED
IDENTIFIER
616
N~ AUTHENTICATE REQUEST
WITH APPENDED IDENTIFIER
8 | RemovE APPENDED
IDENTIFIER FROM REQUEST
0 1 erocessrequeTAND |
DYNAMICALLY GENERATE
WEB PAGE
622 SEND DYNAMICALLY
~— GENERATED WEB PAGE
TO SERVER
62\L REPLACE REFERENCES TO
PROTECTED IMAGES IN WEB
PAGE WITH REFERENCES
TO SUBSTITUTE DATA
|
L 4
628 [RECEWVE MODIFIED WEB 626
1 PAGE WITH REFERENCES o SEND MODIFIED WEB PAGE
TO SUBSTITUTE DATA FROM 10 CLENT
SERVER
632 | RECEVE REQUEST
*_] vecquestsussmmure o — sSsCsmETEESAl\JIA nggl’:ﬂ
FROM WEB SERVER " CUENT
8% | RECEVE SUBSTTUTE DATA 84 | sen sussmure para 10
FROM WEB SERVER CLENT
640
N !
638
VIEW WEB PAGE « PROCESS SUBSTITUTE DATA
AND RENDER WEB PAGE FIGURE 6

US 6,353,892 B2

Sheet 7 of 15

Mar. 5, 2002

U.S. Patent

[N9
NI ‘l_
JOVINI ™ ONISSIO0Nd
QALOILOUINN |, RIMONYLS
N ON onisszooud || v dinusens)
L | 39VINId3D3LI0Nd
VNIV —
LQ3Lo3Loud\)| voL
IOV SI/[s3A
e « 801
90L aug
JALNdWOD INIMD
901

U.S. Patent Mar. 5, 2002 Sheet 8 of 15 US 6,353,892 B2

|la ale
* USER b CLIENT COMPUTER ——{
802 804
OPEN WEB PAGE IN WEB L/ “—1 RENDER WEB PAGE
BROWSER » WITH IMAGE
806
VIEW WEB PAGE
l 808 810
EXECUTE COMMAND TO _/ \— CALLBITBLT TO EXTRACT
COPY IMAGE TO CLIPBOARD PIXEL DATA FOR COPYING
(E.G. PRINTSCREEN) TO CLIPBOARD
r
BITBLT
IS IMAGE
812 PROTECTED? i
814
— JUMP TO SUBSTITUTE
PROGRAM CODE
816
N <
RETURN REQUESTED
PIXEL DATA
818
‘| REPLACE REQUESTED PIXEL
»| DATA WITH SUBSTITUTE DATA
820
N
RETURN SUBSTITUTE DATA
824
N ,
PASTE FROM CLPBOARD: 822 |
UNABLE TO COPY ’ WRITE DATA TO CLIPBOARD |
PROTECTED IMAGE

FIGURE 8

US 6,353,892 B2

Sheet 9 of 15

Mar. 5, 2002

U.S. Patent

6 RINSH
LINAAINI
0L6 viva ||
_| 3Lnwsans N
¢Lo | 3ovd@m || o
\{ a3digow Ny I/NOISRI[|
\ON L
rl6) 0ss300ud| | Lt
o ¢l e
/h AIHITONW s viva| |/
OVd EIM | | 31N11158NS
NOO /‘...;”/{
JISMORIE
I9Vd 63 5
- M veam CELD
06— 206 T o BOAISINOR 430400 INInD
_ JOVIL | S5
IOV |, a310310¥d / %01
d310310¥d 404 SVIY
Z# AALNNOD L# 43LNdNOD LNeIN
Nrvint AIANIS

/ 906

/ 006

US 6,353,892 B2

Sheet 10 of 15

Mar. 5, 2002

U.S. Patent

ol NS4

JOVd 8IM ¥IANZY ANV
Vivdad 31N1ISaNns $S300ud

3OVd EIMMIA

A3NWOD INIFD OL
YIvQ ANILSENS ANIS

f

I

L UIINIWOD ¥3AIIS WO
VIvVQ AUNLLSBNS IABDIY

YIINdWOD ININD
WO viva AIntusans
HO4 1S3NOF IARDTY

f

1# AAUNINOD UINITS NOUS
Vivad NSNS 1SN0

YAUNGWOD ININD OL
VIVQ 3ININSANS OL IONIYIIRY
HIIM 39V 93IM QILICOW AN3S

i

IAYIS

WO viva JINILS8ns Ol
SIONIFYHHRI HLIM 3DVd
83IM GIHITON IAIBDTY

VIVQ AINULSANS OL IONTHIHRY
HIM 39VYINI QIsVITY

Ol 3ONIIIHRY ONIOY 4R

A8 3IDVd €IM AJIQOW

t

Viva nuisans
HUM VIVa 39V
QAUDIAUOU IDVIdIR

L# Y3ANINOD AIAIIS O1 Vivd
FOVWI QII0310Ud AN3S

t

i

oF HANIWOD
YIAIFS WO VIva
IDVINI G300 IAFORY

1 NN HINAS
WOU4 viva 3DVWI 4310310ud
HO4 1S3NO A

f— z# 831naW00 B3NS —sfe— L3NNI ——+fe— 14310000 HaANTS

& HINdNOD
YIS WO viva
FOVINI QILDIION 1SINO3Y

t

SYITY WOU3 39vVINI
JAULDI0UA YO INYNTTH
ANV SSRIAAVY di dN OO

ﬂ
AANIWOD
ININD WOYS IDVWI aIsVNY
O1 3ONFUIIT HIM IDVd
93M YO 1S3ND3Y 3NIDOR

oot

ﬂmﬁd_

L# YIINIWNOD U3AA3S
WO 35V 83Im 1SINO

UIMONE
83IM NI 3OVd 83M N3JO

nIvT| 13INYINY Iv_u' HANNOD INND

43asn

US 6,353,892 B2

I HANDOILA 1 HINDIA

Sheet 11 of 15

Mar. 5, 2002

U.S. Patent

US 6,353,892 B2

Sheet 12 of 15

Mar. 5, 2002

U.S. Patent

¢l HINOIA

_EE xmu::&mmam_ns_m@

Ly xapuyagesaajduwiesy
Ly xapuyagesas|duiesy
Wiy xapulage safajdwesy
Wiy xapulagesaa)dwesy
jwiyxapuyajesasajdwegy
Wy Xapulsjesijajdwesy
iwy xapulagesasa|dwegy
(Wi xapuyajesisajdwegy
Juyxapuysjesafa|dwesy
(unyxapuyajesya|duesy
juilyxapuiagesaajdwesy
Wy xapuljagesaajduesy
Wy xapulayesaaiduesy
jwyxapulajesaaidwesy
jwiyxapuaesaaidwesy
_EE xmu:.@mm&w&&mm.ﬂ

)
ubjaxidauc
ho' | sjw

N uwbnduw
No L dw

b puw
JIb-ofiojw
Nbeyw

JIb zdolnuaw
Jbjoqnuaw
nbnaw
JB1eaguew
1o Lew

UG smauy
N0 bNYbIYY
nbj@aymue
JIb siamopue

4 LU Jur 1A
aleAld™
lwjyxapul fE
iy exepuy (5
luiy Zxapul

ms ¥
sueiuod

sofoq ﬁ@

S(eIs)
sajdwessy

OQO00O0OO0OC0OOO®

shey :Qem

1abeue i aje mxi Fx

ST HANDIA

[leswes [0 [iowreq oom

| - Eou,m_hmmo@cmu., o SRR N |- 7 5= Bhl-) g
Tv (oureauoyg 19A87T UnEwLojif Bo

bafojaless . awiBN 3N 6O

US 6,353,892 B2

9& . E_Ew mz.&&m 8::2_ mﬁmo”

7o)
—
Qoo
=)
en
—
b
D e s oot s o A ST
D
=]
9]
Ammm S E L_c_oo EE@chE 1 Emc.:m.w?
{ 1.0} ov cozms.mm xhvc.:m?g
m JBIeUMaeMm T S : L ”m__“_thc:wﬂm;
m N6 u3amInejapi=as OWl> . I Gey EmEmomEmm
.m (paI) sabew pajajoid ieunaiep, & G msesem nmgna:wc:ue__
nMa WU INeJap i Emguooz:&masom

locumwwmandiaupss SN R éo_um:q&am

........... 08BELBILTEL 0 Gusi) SSaINpY Ienles
e . : i mmnco_n.u&umsz&m _M;Emmm

H
3
I3

sbei”

-
Q
@
-
0
bl
a.

AansanAnNnte

&l

weapovevivasonvey

U.S. Patent

US 6,353,892 B2

Sheet 14 of 15

Mar. 5, 2002

U.S. Patent

I HINDIA

LT HANDIA

gg:elonbasyrdpy
i 08:euldydy
u

$311G 108y

08:elonbasyy:dyyi
08:8uldj-dyy
ajdewi

91 HANDIA

US 6,353,892 B2

Sheet 15 of 15

Mar. 5, 2002

U.S. Patent

0l HANDIA

133104d= dse-g}
/1808:25°95°she°101L//:d3y= euly-stdy/sup
TR /s3draas/yl

123104d= /utq-tba/y

u.“
aaaaa:aaaaaaaaa==aa============aa=a=====a====aaaauaaaasaaaaaaaaaaaaaeaam
fiaestnduos ST aweu fi40323341p ay) 43314e /7 ayl #it

ATY}) J43yjoue fAgq Panatalaa sabeur 4o y1H pajeaauab
33104d 03 ajesxiy 9T1qeua o3 fiyrenueu ayty STY3} 31Ip3

it

d49naas (fijaed p
a aﬁumowsm:muu
a
a
a

UOTIeTTeISU] JAanaas 33eSXTd ayy jJo juey
mmﬂuancgn.mmw;ouomgﬂeaw:ugﬂ:
aaaa:a:a#aa::zaaaas:a#aaa:aaaa

US 6,353,892 B2

1

COPY PROTECTION OF DIGITAL IMAGES
TRANSMITTED OVER NETWORKS

This application is a division of commonly-owned U.S.
application Ser. No. 09/397,331, filed on Sep. 14, 1999,
entitled “Method and System for Copyright Protection of
Digital Images Transmitted Over Networks,” which is a
continuation-in-part of U.S. application Ser. No. 09/313,
067, filed May 17, 1999, entitled “Methods And Apparatus
For Preventing Reuse of Text, Images And Software Trans-
mitted Via Networks.”

FIELD OF THE INVENTION

The present invention relates to copyright protection of
digital data.

BACKGROUND OF THE INVENTION

Software copyright protection is a central concern in
software development, and in copyright law itself. Typically,
software is distributed in shrink-wrap packages containing
diskettes and/or CD-ROMs, and over the Internet via ftp
servers. Protecting software from rampant unauthorized
copying, distribution and use (“software piracy”) is one of
the most challenging problems facing the software industry.

Over the past years, several techniques have been devel-
oped for combating software piracy. These include use of
hardware plugs, use of license keys, use of tokens and
sophisticated encryption systems.

One of the leading technologies for controlling use of
software within turnkey transaction systems is the Digital
Rights Management system of InterTrust® Technologies
Corp. of Sunnyvale, Calif., as described in U.S. Pat. Nos.
5,892,900, 5,410,598, 5,050,213, 4,977,594 and 4,827,508.
Information about InterTrust is available on the web at
http://www.intertrust.com.

Another such leading technology is the CyberSales Solu-
tion™ of SoftLock.com, Inc. of Maynard, Mass., as
described in U.S. Pat. No. 5,509,070. CyberSales Solution
provides locking and unlocking functionality so that content
can be securely previewed by consumers, electronically
purchased and redistributed, and it protects the content in an
initial transaction and in subsequent information pass-along.
Content providers can control how much information is
available without paying, and disable, or additionally charge
for, the ability to print or cut and paste. CyberSales Solution
handles secure transactions, remittance processing, reports,
audits and customer service. Information about CyberSales
Solution is available on the web at http://www.softlock.com.

With the advent of the use of compelling multi-media on
web pages accessible over the Internet, protection of digital
images and other media is becoming increasingly critical.
Web designers are reluctant to use valuable digital “works of
art” knowing that users can easily copy them onto their own
computers, and use them for their own unauthorized pur-
poses. Moreover, anyone using a web browser to view an
image posted on the Internet can easily copy the image by
simply positioning a mouse pointer over the displayed
image, clicking on the right mouse button and selecting a
“Save Image As . . . ” command. Copyright and piracy issues
are major problems for web publishers.

Prior art techniques for protecting digital images include
the embedding of invisible digital watermarks within
images, so that copies of protected images can be traced.
Digimarc Corporation of Lake Oswego, Oreg. embeds hid-
den messages within pixel data for identifying protected

10

15

20

25

30

35

40

45

50

55

60

65

2

images, and tracks their distribution over the Internet to
monitor potential copyright infringement. Digimarc images
carry unique IDs that link to pre-determined locations on the
web. Digimarc images are compatible with standard image
formats, such as JPEG, and can be opened and displayed by
standard image readers. However, when opened with a
Digimarc reader, the images are displayed together with a
“Web look up” button that enables a user to identify the
sources of the images. Digimarc technology is described in
U.S. Pat. Nos. 5,862,260, 5,850,481, 5,841,978, 5,841,886,
5,832,119, 5,822,436, 5,809,160, 5,768,426, 5,765,152,
5,748,783, 5,748,763, 5,745,604, 5,721,788, 5,710,834 and
5,636,292, Information about Digimarc is available on the
web at http://www.digimarc.com.

These techniques are useful in thwarting digital image
piracy to the extent that they trace pirated content, but they
do not prevent unauthorized copying of digital images in the
first place.

Other prior art techniques require a webmaster to modify
images residing on a server computer in order to protect
them. The webmaster is also required to modify his web
pages accordingly, so as to reference the modified images.
SafeMedia™ is a software product of Internet Expression,
Inc. of Exton, Pa. that converts images from a standard
format such as JPEG into SIF (Safe Image Format). SIF
images can only be viewed with a SafeMedia Java viewer.
SafeMedia embeds a host or domain name into an image,
and checks that the image is located on the web site it was
intended for. SafeMedia also includes enhanced system
control for preventing screen capture by disabling a clip-
board. Information about SafeMedia is available on the web
at http://www.safemedia.com.

These techniques are difficult to embrace, since they
require modification of all protected images on the web, as
well as modification of the web pages that reference them.
Furthermore the SIF Java viewer has the limitation of only
being able to load images from the same server that the
viewer came from.

Other prior art techniques for protecting digital images
use Java applets within web browsers to disable the menu
that pops up when a user right clicks on a displayed image
within his web browser. Copysight® is a software applica-
tion of Intellectual Protocols, LLC of Nanuet, N.Y. that uses
digital watermarking and fingerprinting to protect images,
and includes a Java applet that disables the ability to save
displayed images within a web browser and the ability to
print them. Copysight operates by converting unprotected
files to protected files that are encrypted and that contain
digital fingerprints. Copysight also tracks distribution of
protected images across the Internet, and issues reports of
potential copyright infringement. It allows a web adminis-
trator to select which files are to be protected. Information
about Copysight is available on the web at http://
www.ip2.com.

These techniques disable unauthorized copying of digital
images from within web browsers, but they do not protect
the images from being copied by an application external to
the web browser. For example, they do not prevent a user
from copying digital images displayed in his web browser
by means of an application running external to the web
browser, such as an image editing tool, or by means of a
Print Screen or other such command that serves to copy
contents of a video buffer to a clipboard. Thus a Java applet
that prevents unauthorized copying of digital images from
within Netscape Communicator or Internet Explorer can be
circumvented by a user pressing on a Print Screen button of

US 6,353,892 B2

3

his keyboard, or by a user copying and pasting from a
window of his web browser to a window of another software
application.

SUMMARY OF THE INVENTION

The present invention provides a method and system for
enabling a user to view protected image data using his web
browser without being able to copy it. The slogan “Look but
Don’t Touch™" has been adopted to describe the feature of
the present invention that enables a user to view content
without being able to copy it into his computer.

The present invention is distinct from prior art methods in
several respects. A first distinction is that the present inven-
tion displays an image to a user without downloading
unmodified image data to the user’s computer. Thus, unlike
software piracy techniques that protect an original copy of
software from being illegally copied, the present invention
does not provide an original copy in the first place.

Asecond distinction is that the present invention prevents
a user from copying a protected image both from within and
from without his web browser. Specifically, the present
invention blocks copying of an image from within his web
browser, when a user selects the “Save Image As . . . ”
command and when a user prints the contents of a web
browser window. It also blocks copying of an image from
without when a user presses the “Print Screen” button of his
keyboard or attempts to copy from his web browser window
and paste onto a window of another application, or when a
third party software application attempts to use the “Print
Screen” command.

In a preferred embodiment, the present invention uses a
software web server plug-in that filters HI'TP requests and
sends substitute data, such as encrypted image data, for
requested image data that is protected. It also uses a software
web browser plug-in for displaying the substitute data and
for blocking the ability to copy protected image data being
displayed from the video buffer of the user’s computer. It
also uses a management tool for setting protection status of
images and web pages residing on one or more server
computers.

There is thus provided in accordance with a preferred
embodiment of the present invention a method for protecting
digital images distributed over a network, including the
steps of receiving a request from a client computer running
a network browser, for an original layout page containing
references to digital images therein, parsing the original
layout page for the references to digital images, generating
a modified layout page from the original layout page by
replacing at least one of the references to digital images in
the original layout page with references to substitute data,
and sending the modified layout page to the client computer.

There is further provided in accordance with a preferred
embodiment of the present invention a method for protecting
files distributed over a network, including the steps of
displaying a list of files, generating protection status infor-
mation in response to selection by a user of at least one of
the files in the list of files, and sending the protection status
information to a server computer.

There is yet further provided in accordance with a pre-
ferred embodiment of the present invention a system for
protecting digital images distributed over a network, includ-
ing a receiver receiving a request from a client computer
running a network browser, for an original layout page
containing references to digital images therein, a layout page
parser parsing the original layout page for the references to
digital images, a layout page generator generating a modi-

10

15

20

25

30

35

40

45

50

60

65

4

fied layout page from the original layout page by replacing
at least one of the references to digital images in the original
layout page with references to substitute data, and a trans-
mitter sending the modified layout page to the client com-
puter.

There is moreover provided in accordance with a pre-
ferred embodiment of the present invention a system for
protecting files distributed over a network, including a user
interface displaying a list of files, a protection status man-
ager generating protection status information in response to
selection by a user of at least one of the files in the list of
files, and a transmitter sending the protection status infor-
mation to a server computer.

There is additionally provided in accordance with a
preferred embodiment of the present invention a method for
protecting digital images distributed over a network, includ-
ing the steps of receiving a request from a client computer,
submitting the request to a server computer, receiving an
original layout page containing references to digital images
therein from the server computer, parsing the original layout
page for the references to digital images, generating a
modified layout page from the original layout page by
replacing at least one of the references to digital images in
the original layout page with references to substitute data,
and sending the modified layout page to the client computer.

There is further provided in accordance with a preferred
embodiment of the present invention a system for protecting
digital images distributed over a network, including a
receiver receiving a request from a client computer and
receiving an original layout page containing references to
digital images therein from a server computer, a transmitter
submitting the request to the server computer and sending a
modified layout page to the client computer, a layout page
parser parsing the original layout page for the references to
digital images, and a layout page generator generating the
modified layout page from the original layout page by
replacing at least one of the references to digital images in
the original layout page with references to substitute data.

There is yet further provided in accordance with a pre-
ferred embodiment of the present invention a method for
protecting digital images displayed in a web browser,
including the steps of displaying a digital image by a web
browser, the digital image including pixel data, requesting
access to pixel data of the digital image, and in response to
the requesting, blocking access to pixel data of the digital
image.

There is additionally provided in accordance with a
preferred embodiment of the present invention a method for
protecting digital images displayed in a web browser,
including the steps of displaying a digital image by a web
browser, the digital image including pixel data, requesting
access to pixel data of the digital image, in response to the
requesting, intercepting a request to access pixel data of the
digital image, and providing substitute data to pixel data of
the digital image in a response to the request to access pixel
data of the digital image.

There is moreover provided in accordance with a pre-
ferred embodiment of the present invention a system for
protecting digital images displayed in a web browser,
including a web browser displaying a digital image, the
digital image including pixel data, a command processor
requesting access to pixel data of the digital image, and a
request blocker, blocking access to pixel data of the digital
image requested by the command processor.

There is further provided in accordance with a preferred
embodiment of the present invention a system for protecting

US 6,353,892 B2

5

digital images displayed in a web browser, including a web
browser displaying a digital image, the digital image includ-
ing pixel data, a command processor requesting access to
pixel data of the digital image, a request interceptor inter-
cepting a request to access pixel data of the digital image
received from the command processor, and a data processor
providing substitute data to pixel data of the digital image in
a response to the request to access pixel data of the digital
image.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more fully understood and
appreciated from the following detailed description, taken in
conjunction with the drawings in which:

FIG. 1 is a simplified illustration of a system for copyright
protection of digital images for use within a distributed
server-client computing environment, in accordance with a
preferred embodiment of the present invention;

FIG. 2 is a simplified flowchart of a method for protecting
digital images that are distributed within a server-client
computing environment, in accordance with a preferred
embodiment of the present invention;

FIG. 3 is a simplified illustration of a management
system, for managing protection of digital images, in accor-
dance with a preferred embodiment of the present invention;

FIG. 4 is a simplified flowchart of a method for managing
digital image protection, in accordance with a preferred
embodiment of the present invention;

FIG. 5 is a simplified illustration of a system for copyright
protection of digital images that are referenced in dynami-
cally generated web pages, in accordance with a preferred
embodiment of the present invention;

FIG. 6 is a simplified flowchart of a method for protecting
digital images that are referenced in dynamically generated
web pages, in accordance with a preferred embodiment of
the present invention;

FIG. 7 is a simplified illustration of a system for prevent-
ing unauthorized copying of digital images within a client
computer, in accordance with a preferred embodiment of the
present invention;

FIG. 8 is a simplified flowchart of a method for preventing
unauthorized copying of digital images within a client
computer, in accordance with a preferred embodiment of the
present invention;

FIG. 9 is a simplified illustration of a system for copyright
protection of digital images residing on a computer that are
referenced in a web page residing on a different computer;

FIG. 10 is a simplified flowchart of a method for copy-
right protection of digital images residing on a computer that
are referenced in a web page residing on a different com-
puter;

FIG. 11 is an illustration of a user interface dialogue box
for adding a new site, within a protection management tool
operative in accordance with a preferred embodiment of the
present invention;

FIG. 12 is an illustration of a user interface dialogue box
for accessing a site, within a protection management tool
operative in accordance with a preferred embodiment of the
present invention;

FIG. 13 is an illustration of a user interface screen for
setting protection status, within a protection management
tool operative in accordance with a preferred embodiment of
the present invention;

FIG. 14 is an illustration of a tool bar within a protection
management tool operative in accordance with a preferred
embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 15 is an illustration of a user interface dialogue box
for setting server parameters within a protection manage-
ment tool operative in accordance with a preferred embodi-
ment of the present invention;

FIG. 16 is an illustration of a user interface dialogue box
for modifying a password for accessing a web server, within
a protection management tool operative in accordance with
a preferred embodiment of the present invention;

FIG. 17 is an illustration of a user interface dialogue box
for a site list, within a protection management tool operative
in accordance with a preferred embodiment of the present
invention;

FIG. 18 is an illustration of a user interface dialogue box
for defining mirror sites, within a protection management
tool operative in accordance with a preferred embodiment of
the present invention; and

FIG. 19 is an illustration of a virtual directory properties
file residing on a web server computer in accordance with a
preferred embodiment of the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

The present invention concerns protection of digital
images transmitted over a network from unauthorized copy-
ing and use. Unlike prior art methods used to prevent
software piracy, the present invention enables a user to view
an image in his web browser without ever receiving original
unmodified digital image data, and without being able to
save the displayed image on his computer.

Typically, digital images are viewed over the Internet
within web pages, such as hyper-text markup language
(HTML) or extended markup language (XML) pages. Such
web pages are electronic data files, stored on server
computers, containing layout information for displaying text
and graphics, and for running software applications such as
Java applets. Typically, the data for the graphic objects, such
as images, displayed within a web page is not contained
within the web page file itself. Instead, the graphic objects
reside elsewhere on the same server computer or other
server computers, and the web page file contains references
to the graphic objects. A reference to a graphic object
specifies the network address of the computer containing the
graphic object, such as an IP address, together with the
directory path (relative to a prescribed root directory) and
filename for the graphic object.

When a web browser in a client computer downloads a
web page file, it parses the web page in order to display it
on a video monitor. While parsing the web page, the web
browser encounters the references to graphic objects, and in
turn downloads the graphic objects. Downloading a web
page file and the graphic objects it references is typically
done through the HTTP protocol. Client requests for data on
server computers are issued through HTTP requests, and
data transmission from server to client is issued through
HTTP responses.

After downloading the graphic objects, the web browser
can render the web page with the graphic objects embedded
therein, and display it to the user on his video monitor. In
turn, the user can interact with the displayed web page by
clicking on hyper-links to other web pages, or by interacting
with an application such as a Java applet.

Most web browsers enable a user to view the source for
the web page being displayed. For example, they may
contain a menu item “View Page Source” under a “View”
heading. In addition, they also enable a user to save images

US 6,353,892 B2

7
being displayed, by right-clicking on such an image with a
mouse cursor positioned thereover, and selecting a “Save
Image As . . . ” menu item. Upon selection of the “Save
Image As . .. ” item, the web browser opens an Explorer type
directory window that enables the user to select a folder and
filename for the image being saved.

In a preferred embodiment of the present invention, the
image data that is transmitted from a server computer to a
client computer is encrypted image data that is generated
from the original image data by encoding it using an
encryption algorithm. In this embodiment, additional soft-
ware may be required by the web browser in order to decode
the encrypted data, since a standard web browser typically
supports only a limited number of image file formats, such
as GIF and JPEG, and may not contain the decoder neces-
sary to decrypt the encrypted image data. For the Netscape
Communicator web browser of Netscape Communications,
Inc. of Mountain View, Calif., such additional software may
be a plug-in or a Java applet. For the Internet Explorer web
browser of Microsoft Corporation of Redmond, Wash., such
additional software may be an Active-X control or a Java
applet. The additional software is used to decode the
encrypted image data, and render it for display on a video
monitor.

When a user attempts to save an image being displayed by
his web browser, the present invention, in a preferred
embodiment, prevents him from doing so. There are several
manners in which a user can attempt to save an image being
displayed. The user may select the “Save Image As . . . ”
menu option that appears with right-clicking on the image.

The user may also attempt to save an image being
displayed by copying the image from his web browser’s
cache. Typically, images being displayed by web browsers
are stored temporarily in a local cache on the client com-
puter.

The user may also attempt to copy the entire screen by
pressing a “Print Screen” command key on the keyboard.
Typically, this causes the contents of the video display buffer
to be pasted onto the user’s clipboard. The user may also
attempt to save an image being displayed by running a
software application outside of his web browser. For
example, an image editing application, such as Paint Shop
Pro of Jasc Software, may have the capability of copying
images from within web browsers to their own windows.

For each scenario whereby the user attempts to save an
image being displayed by his web browser, additional soft-
ware used by the web browser is operative to prevent the
image data from actually being saved. In one embodiment,
the present invention replaces the image being saved with
substitute data, so that the user in fact saves a substitute
image. For example, the substitute image may be an
encrypted image, which the user is unable to view. For
another example, the substitute image may be a water-
marked version of the original image, derived therefrom by
composing watermarks over the image. For yet another
example, the substitute image may be a prescribed image,
possibly unrelated to the image being displayed by the web
browser. Thus when the user selects the “Save Image As . .
.7 option, or presses the “Print Screen” button, or copies the
image from another software application, the image that is
saved into the local file system or copied to the clipboard is
a substitute image.

In another embodiment, the present invention disables the
user’s ability to save an image being displayed, and does not
enable the user to save image data at all. For example, the
“Save Image As . . . ” menu option may be disabled, so that

10

15

20

25

30

35

40

45

50

55

60

65

8

the user cannot select it, and the “Print Screen” key on the
keyboard may be disabled so that when the user presses on
it, nothing happens, and copying of the image by other
software applications may be blocked.

As described in detail hereinbelow, controlling or dis-
abling the “Save Image As . . . ” menu option is preferably
accomplished by additional software used by the web
browser through intervention with mouse control functions.
Controlling or disabling the “Print Screen” key on the
keyboard is preferably accomplished by additional software
used by the web browser through intervention with keyboard
control functions. Controlling or disabling copying of dis-
played image data by other software applications is prefer-
ably accomplished within the Windows operating system by
intervention (“patching”) with the Windows application
programming interface (API) functions which copy pixel
data from the video buffer of a computer, such as BitBlt,
StretchBlt, PlgBlt, GetPixel and GDI32.

Similarly, controlling or disabling copying of displayed
image data by other software applications is preferably
accomplished within the Macintosh operating system by
using a system extension to intervene with ToolBox func-
tions. ToolBox calls are managed by an array of pointers in
a Trap Dispatch Table, each pointer pointing to appropriate
program code. As described in more detail hereinbelow, the
system extension can change these pointers so that they
point to different program code. The different program code
corresponds to patched ToolBox functions.

A web server administrator (“webmaster”) is responsible
for configuring web server software and for managing web
pages and images stored on a server computer. Typically, the
administrator may wish to protect some of the images from
unauthorized copying or use, and may wish to have other
images unprotected, in accordance with instructions from
the owners of the images. In a preferred embodiment, the
present invention includes a management tool for managing
protection of digital images residing on a server computer.
The management tool preferably enables an administrator to
select specific images to be protected from unauthorized
copying or use as described hereinabove.

Image protection may be specified in several modes,
including (i) on an individual image-by-image basis, (ii) on
a web page basis, (iii) on a folder basis, and (iv) on a tagged
basis, as described hereinbelow. Protection specification on
an individual image-by-image basis is carried out by select-
ing one or more image files within the management tool,
preferably by a user interface that presents an Explorer-type
window for navigating through file systems.

Protection specification on a web page basis is carried out
by selecting one or more web page files within the manage-
ment tool. Selection of a web page for protection entails
protection of all images referenced within the selected web
page. In one embodiment of the present invention, such
referenced images are maintained protected when the same
images are referenced within other web pages. In an alter-
nate embodiment of the present invention, such referenced
images are protected only when referenced within web
pages that are protected.

Protection specification on a folder basis is carried out by
selecting one or more folders within the management tool.
Selection of a folder for protection entails protection of all
web pages and all images referenced within the selected
folder and, recursively, within all sub-folders thereof.

Protection specification on a tagged basis is carried out by
delineating segments within a web page that are to be
protected by protection tags. Specifically, in a preferred

US 6,353,892 B2

9

embodiment of the present invention, protect and unprotect
tags, such as <!protect> and <!/protect>, are used to bound
segments of layout instructions within a web page, and every
image referenced within such a segment between the tags is
protected. Preferably, images referenced between the pro-
tection tags are protected only when referenced between
protection tags within web pages, and are otherwise
unprotected, unless additional protection has been specified
by one of the above modes (individual image-by-image
basis, web page basis, and/or folder basis).

In a preferred embodiment of the present invention, the
management tool can be used to change the protection status
(protected/unprotected) of images on a server computer
from time-to-time.

In a preferred embodiment of the present invention, the
management tool need not be operated from the server
computer that contains the images whose protections are
being specified. Instead, it can be executed from any com-
puter connected to such server computer via a network. Thus
a web administrator can remotely set the protections of
images on multiple server computers from his own local
computer, as long as there is a network connection between
his computer and the multiple server computers.

Reference is now made to FIG. 1, which is a simplified
illustration of a system for copyright protection of digital
images for use within a distributed server-client computing
environment, in accordance with a preferred embodiment of
the present invention. A server computer 100 typically
includes web server software 102 that serves web pages 104
to a plurality of client computers 106 over the Internet. Web
pages 104 typically contain references to images that are to
be embedded within the pages when the pages are rendered
on client computers 106. The images referenced in web
pages 104 typically reside on server computer 100, although
they may reside on other computers as well. Operation of the
present invention when the images reside on other comput-
ers is described below with reference to FIG. 9 and FIG. 10.

Some of the images referenced in web pages 104 are
preferably designated as protected images 108, which the
owners desire to protect from unauthorized copying or use.
Others of the images referenced in web pages 104 are
designated as unprotected images 110, which the owners are
not concerned about protecting from unauthorized copying
or use. Designation of images as protected or unprotected is
typically made by the owners of the images. For example,
images may be designated as protected images when they
contain significant creative content, and images may be
designated as unprotected images when they contain little or
no creative content, it being understood that other criteria
can be used alone or in combination as a basis for distin-
guishing between protected and unprotected images.

Client computers 106 typically use web browser software
112 to access web pages stored on server computers 100,
over the Internet. A web browser 112 requests a web page
104 from a server computer 100 by issuing an HTTP request.
An HTTP request arriving at server computer 100 is pro-
cessed by web server software 102.

In a preferred embodiment of the present invention, an
incoming HTTP request to server computer 100 is routed to
an HTTP request filter 114. HTTP filter 114 accesses the
requested web page 104 and parses it using a web page
parser 116, to identify the images that are referenced there-
within. Server computer 100 maintains a protection status
database 118 that stores a protection status (protected/
unprotected) for each image residing on server computer
100. HTTP filter 114 determines the protection status of each

10

15

20

25

30

35

40

45

50

55

60

65

10

image referenced within web page 104, using protection
status database 118. It will be appreciated by those skilled in
the art that protection status database 118 may reside on a
different computer than server computer 100, but when it
resides on server computer 100 the system of the present
invention can conveniently determine protection status of
images without having to retrieve such information from
another computer.

An unprotected image 110 referenced within web page
104 is handled by web server software 102 in the normal
fashion. Specifically, neither the reference to unprotected
image 110 nor image 110 itself are modified. However, a
protected image 108 referenced within web page 104 is
handled differently. A modified web page 120 is generated
by a web page modifier 122. Specifically, the reference to
protected image 108 in web page 104 is modified by web
page modifier 122 so as to reference substitute data 124.

Substitute data 124 preferably corresponds to an image
that is visually identical or substantially similar to protected
image 108. When substitute data 124 corresponds to an
image that is visually identical to protected image 108, it is
preferably an encrypted version of the protected image data.
In a preferred embodiment of the present invention, the
choice of what type of substitute data 124 to use depends on
the owner’s preference (e.g. whether or not to display an
identical version of the protected image) and on the type of
web browser 112 issuing the HTTP web page request from
client computer 106.

Specifically, with regard to the type of web browser 112
issuing the HTTP web page request, web browsers 112 may
include software that functions as a substitute data processor
126, in the form of a browser plug-in, Java applet or
Active-X control. Such a substitute data processor is capable
of rendering an encrypted image, and is also capable of
preventing a user of client computer 106 from copying an
image that is displayed by web browser 112.

In a preferred embodiment of the present invention the
substitute data processor is not a Java applet, since Java
applets are not readily capable of protecting against Win-
dows API calls that access pixel data from the video buffer
of a computer, as mentioned hereinabove. However, it is
apparent to those skilled in the art that as Java capabilities
are extended, Java applets may become appropriate for such
protection.

When web browser 112 includes substitute data processor
126, substitute data 124 can be encrypted image data, or
other image data in a format that would not be supported by
a standard web browser 112 that does not include substitute
data processor 126. Furthermore, when web browser 112
includes a substitute data processor 126, substitute data 124
can appear visually identical to protected image 108 when
rendered by substitute data processor 126, and yet a user of
client computer 106 is not able to copy or use it without
authorization.

When web browser 112 does not include substitute data
processor 126, substitute data 124 should be compatible
with a standard web browser. For example, substitute data
124 can be a standard JPEG image. Alternatively, when web
browser 112 does not include substitute data processor 126,
substitute data 124 can be encrypted image data if modified
web page 120 is generated so as to prompt client computer
to download substitute data processor 126 in order to display
substitute data 124. This is typically the way in which web
pages prompt a client computer to download Java applets,
Active-X controls within Internet Explorer, and plug-ins
utilizing the Smart Update feature within Netscape Com-
municator.

US 6,353,892 B2

11

In a preferred embodiment of the present invention, the
determination of which images on server computer 100 are
protected images 108 and which images are unprotected
images 110 is managed by a protection manager 128 resid-
ing on a remote computer 130, connected to server computer
100 by a network. It will be appreciated by those skilled in
the art that protection manager 128 may reside on server
computer 100, but the possibility of it residing on a remote
computer 130 affords greater convenience to an administra-
tor who can then administer server computer 100, and other
server computers as well, remotely off-site.

Reference is now made to FIG. 2, which is a simplified
flowchart of a method for protecting digital images that are
distributed within a server-client computing environment, in
accordance with a preferred embodiment of the present
invention. The flowchart is divided into three columns. The
leftmost column includes steps performed by a user, the
second column from the left includes steps performed by a
client computer, and the rightmost column includes steps
performed by a server computer connected to the client
computer over the Internet or such other network of com-
puters.

At step 202 the client computer requests a connection to
the server computer. At step 204 the server computer opens
a communication socket between the client computer and
the server computer. At step 206 the user requests to open a
web page using his web browser and, in response, at step
208 the client computer issues an HTTP request for the web
page to a web server on the server computer, using the web
browser. At step 210 the web server receives the HTTP
request for the web page from the client computer.

In a preferred embodiment of the present invention, at
step 212 the server computer searches a database to deter-
mine whether or not the web page being requested refer-
ences any protected images, or has protection tags. If so, it
routes the incoming HTTP request to an HTTP request filter,
as described hereinabove with respect to FIG. 1. The HTTP
filter applies a web page parser to the requested web page
and identifies the images referenced therewithin. At step 214
the server computer generates a modified web page wherein
references to the protected images are replaced with refer-
ences to substitute data. The substitute data is preferably
derived from the protected images. For example, the sub-
stitute data may be encrypted image data, obtained by
applying an encryption algorithm to the protected image
data. The modified web page is preferably a separate web
page generated by a web page modifier, so that the original
web page is preserved, as indicated in FIG. 1. Alternatively,
the substitute references may be incorporated directly into
the original web page, without generation of a separate
modified web page.

At step 216 the modified web page is sent back to the
client computer within an HTTP response. At step 218 the
client computer receives the modified web page containing
references to substitute data, and the web browser begins to
render the modified web page. In rendering the modified
web page, the web browser encounters the references to the
substitute data, and at step 220 the substitute data processor
within the client computer issues to the web server an HTTP
request for the substitute data. At step 222 the server
computer receives the HTTP request for the substitute data,
and at step 224 the server sends an HTTP response contain-
ing the substitute data to the client computer. At step 226 the
client computer receives the HTTP response containing the
requested substitute data, and at step 228 the client computer
processes the substitute data using a substitute data
processor, as described hereinabove with respect to FIG. 1,
and renders the web page.

10

15

20

25

30

35

40

45

55

60

65

12

At step 230 the user views the web page he requested. It
is thus appreciated that the present invention enables the
user to view protected images without being able to down-
load them to his computer in unmodified form. Instead,
substitute data is downloaded, such as encrypted image data.

If the server computer determines at step 212 that the
requested web page does not reference protected images and
does not have protection tags, then the HTTP request is
passed to the server without any parsing. In this case, the
processing is much simpler, and proceeds in the normal
manner. Specifically, a modified web page is not generated
and substitute data is not used. Rather, at step 232 the
unmodified web page is sent to the client computer within an
HTTP response. At step 234 the client computer receives the
HTTP response containing the unmodified web page, and
the web browser begins to render the web page. In rendering
the web page, the web browser encounters the references to
unprotected images, and at step 236 the client computer
issues an HTTP request for the unprotected images to the
web server. At step 238 the server computer receives the
HTTP request for the unprotected images, and, in response,
at step 240 the server computer sends an HTTP response
containing the unprotected images. At step 242 the client
computer receives the HTTP response with the unprotected
image data, and at step 244 the web browser processes the
unprotected images and renders them with the web page.

At step 230 the user views the web page he requested. It
is thus appreciated that the unprotected image data is down-
loaded to the client computer as unmodified data, and is
therefore susceptible to unauthorized copying or use.

Reference is now made to FIG. 3, which is a simplified
illustration of a management system, for managing protec-
tion of digital images, in accordance with a preferred
embodiment of the present invention. Remote computer 130
administers protection of images on server computer 100 by
entering and editing protection status information
(protected/unprotected) within protection status database
118. Remote computer 130 retrieves file information 302
from file system 304 of server computer 100, and retrieves
protection settings 306 from protection status database 118.
Using file information 302, a user interface 308 displays a
list of folder names, web page file names and image file
names for the files in file system 304.

Protection settings 306 are used by user interface 308 to
display an indicator of protection status alongside each
folder, web page and image. For example, in a preferred
embodiment of the present invention, protection settings 306
are indicated to a user as follows:

(i) an icon of a padlock is displayed alongside images that
are designated as protected, whereas no icon is dis-
played alongside images that are designated as unpro-
tected;

(i) a dark blue page icon is displayed alongside web
pages all of whose referenced images are designated as
protected, a light blue page icon is displayed alongside
web pages some, but not all of whose referenced
images are designated as protected, and a white page
icon is displayed alongside web pages none of whose
referenced images are designated as protected; and

(iii) a dark blue folder icon is displayed alongside folders
all of whose referenced images are designated as
protected, a light blue folder icon is displayed along-
side folders some, but not all of whose referenced
images are designated as protected, and a white folder
icon is displayed alongside folders none of whose
referenced images are designated as protected.

US 6,353,892 B2

13

Protection settings 306 can be edited by means of user
interface 308. A user can select one or more images from
among the list of image filenames displayed by user inter-
face 308, and set their protection status to protected or
unprotected. The user can also select one or more web pages
from among the list of web page file names displayed by
user interface 308, and set their protection status to protected
or unprotected. Setting the protection status of a web page
to protected or unprotected is equivalent to setting the status
of all the images referenced therewithin to protected or
unprotected, respectively. In one embodiment of the present
invention, such images referenced within a protected web
page are treated as protected within any other web page, and
in an alternate embodiment of the present invention, such
images are treated as protected only within protected web
pages.

Similarly, the user can select one or more folders from
among the list of folder names displayed by user interface
308, and set their protection status to protected or unpro-
tected. Setting the protection status of a folder to protected
or unprotected is equivalent to setting the status of all the
images and web pages within the folder and, recursively,
within all sub-folders thereof, to protected or unprotected,
respectively.

After editing protection settings, the user can click on a
“submit” button in order to apply the modified protection
settings on server computer 100; i.e., in order to have the
modified protection settings take effect. Clicking on the
submit button causes protection settings 306 to be transmit-
ted from remote computer 130 to server computer 100.
When server computer 100 receives the modified protection
settings, it incorporates them into protection status database
118. Once so incorporated, the modified protection settings
take effect, and are used thenceforth to determine the pro-
tection status of the images on server computer 100.

In a preferred embodiment of the present invention, after
the submit button is clicked and protection status database
118 is updated, the modified protection settings 306 are
indicated in user interface 308 by updated icons, as
described hereinabove.

Reference is now made to FIG. 4, which is a simplified
flowchart of a method for managing digital image
protection, in accordance with a preferred embodiment of
the present invention. The flowchart is divided into three
columns. The leftmost column includes steps performed by
a user, the second column from the left includes steps
performed by a protection manager computer, and the right-
most column includes steps performed by a server computer.

At step 402 the user launches a protection manager
software tool. At step 404 the protection manager computer
initiates connection to a web server on the server computer.
At step 406 the server computer opens a communication
socket with the protection management computer. At step
408 the protection manager computer requests file system
information from the server computer. The requested file
system information includes a site map of the folders and
files in the server computer’s file system, and protection
status information for the folders and files listed in the site
map. Protection status of folders and files is preferably one
of the following: (i) protected, (ii) partially protected, (iii)
protected using tags, and (iv) unprotected.

At step 410 the server computer receives the request for
file system information, and at step 412 the server computer
sends the requested information to the protection manager
computer. At step 414 the protection manager computer
receives the requested file system information from the
server computer, and at step 416 the protection manager

10

15

20

25

30

35

40

45

50

55

60

65

14

computer displays this information within a user interface of
the protection manager tool.

At step 418 the user selects one or more folders and/or
web pages, from among a list of folder names and web page
file names displayed by the user interface. In response, at
step 420 the protection manager computer requests image
information and protection status information from the
server computer, for the images contained within the
selected folders and/or for the images referenced within the
selected web pages. At step 422 the server computer receives
the request from the protection manager computer, and at
step 424 the server computer sends the requested image
information and protection status information to the protec-
tion manager computer. As part of step 424 it may be
necessary for the server computer to parse the selected web
pages in order to identify the images referenced therewithin.
Parsing web pages is described hereinabove with reference
to FIG. 1.

At step 426 the protection manager computer receives the
image information and protection status information, and at
step 428 it displays this information within the user interface
of the protection manager tool. Each folder name, web page
file name and image file name is displayed in the user
interface with a corresponding icon alongside that indicates
its protection status. For example, file names of protected
images are displayed with an icon of a padlock alongside.

At step 430 the user selects one or more folders, web
pages and/or images from the list of folder names, web page
file names and image file names displayed by the user
interface, and sets their protection status to protected or
unprotected. Setting a protection status for one or more
folders causes such protection status to apply to all of the
images within such folders. Similarly, setting a protection
status for one or more web pages causes such protection
status to apply to all of the images referenced within such
web pages.

After editing the protection status of various folders, web
pages and images, the user clicks on a “submit” button to
apply the new protection settings. At step 432, the protection
manager computer submits the edited image protection
status information to the server computer. At step 434 the
server computer receives the edited protection status
information, and at step 436 the server computer incorpo-
rates this information into a protection status database. At
step 438 the server computer sends the updated protection
status information back to the protection manager computer,
as a confirmation. At step 440 the protection manager
computer receives the updated protection status information
from the server computer, and at step 442 it displays the
updated status information in the protection manager user
interface.

For ease of use, in a preferred embodiment of the present
invention the protection manager computer displays modi-
fied status information upon selection by the user, as soon as
a protect button is pressed, prior to submitting it to the server
computer. The changes are only sent to the server computer
when a submit button has been pressed. In this embodiment
steps 438, 440 and 442 need not be performed.

Some URL’s do not correspond to existing web page files,
but instead contain instructions, such as CGI script instruc-
tions or Visual Basic instructions, for generating dynamic
web pages, such as active server pages. When a user opens
such an URL, the server computer typically generates a web
page dynamically, and sends the generated web page to the
client computer.

When web pages are generated dynamically, the server
computer cannot parse the web page for references to

US 6,353,892 B2

15

protected images until the web page is generated. However,
when the server receives an incoming HTTP request to
generate a web page, it sends the generated web page as an
outgoing HTTP response back to the IP address of the
originating HTTP request. In order to be able to modity the
generated web page before sending it to the client, so as to
replace references to protected images with reference to
substitute data, the present invention preferably re-submits
the incoming HTTP request locally from the server com-
puter to itself in order to be able to intercept the dynamically
generated web page prior to its being sent to the client.

Specifically, the incoming HTTP request from the client
computer is routed to an HTTP filter, as described above
with reference to FIG. 1. However, in distinction to FIG. 1,
the HTTP filter re-submits the HTTP request from the server
computer to itself. This ensures that when the server com-
puter generates the dynamic web page, it will return it to the
HTTP filter, rather than to the client. When the server
computer resubmits the HTTP request, it preferably does so
by passing along any HTTP header information, such as a
cookie, or any POST information in an HTTP POST request.

Before generating the dynamic web page, in order to
ensure that the HTTP request originates from HTTP filter,
rather than from another source, the HTTP filter preferably
appends an identifier at the beginning of the original HTTP
request, prior to re-submitting the HTTP request. Thus the
re-submitted HTTP request has an additional identifier in its
beginning for authentication purposes.

Preferably, the server computer authenticates the HTTP
request, based on the identifier in its beginning, before
accepting the request and generating the dynamic web page.
After authenticating the request, the server computer
removes the identifier that was appended, and proceeds to
process the request. If the HT'TP request is not authenticated,
the server computer denies the request and does not proceed
to generate the dynamic web page.

In a preferred embodiment of the present invention, the
appended identifier is randomly generated. This serves as a
preventive measure against extraction and fraudulent use of
the identifier, since the identifier is constantly being
changed.

When the server computer authenticates the re-submitted
HTTP request and, in turn, dynamically generates the web
page, it sends the web page to the originator of the
re-submitted HTTP request; namely, to the HTTP filter.
Upon receipt of the web page, the HTTP filter can then parse
the page to identify the images referenced therewithin, and
can generate a modified web page in which references to
protected images are replaced with references to substitute
data, as described hereinabove with reference to FIGS. 1 and
2. The modified web page is sent back to the client computer
in an HTTP response.

Reference is now made to FIG. §, which is a simplified
illustration of a system for copyright protection of digital
images that are referenced in dynamically generated web
pages, in accordance with a preferred embodiment of the
present invention. Dynamically generated web pages are
generated by a web server in response to an HTTP request.
For example, an HTTP request may contain instructions for
a CGI interpreter.

Similarly, images may also be dynamically generated.
Examples of dynamically generated images are

 and

<img src=101.345.56.52/scripts/Getlmage.cgi?image=

name.jpg>.

Unlike the system illustrated in FIG. 1 where a requested
web page already resides as an HTML, XML or such other

10

15

20

25

30

35

40

45

50

55

60

65

16

web page file on a server computer, when a client computer
issues a request for a dynamically generated web page or a
dynamically generated image, the request cannot be filtered
until after it is processed, since only then is the web page or
the image available.

In a preferred embodiment of the present invention,
dynamically generated web pages are handled by re-routing
an incoming HTTP request from the server computer to
itself, in order that the dynamically generated web page first
be processed by an HTTP request filter before being sent to
the client computer. Specifically, in response to a user
:selecting a URL with a CGI script or such other script,
client computer 106 issues an HTTP request to server
computer 100 that includes instructions for generating a web
page. The HTTP request is indicated by a circle-1 in FIG. 5.
The incoming HTTP request is routed to a filter 502 for
processing. Since the requested web page is not available at
this stage, filter 502 cannot parse or modify the page.

Instead, filter 502 re-submits the HTTP request to server
computer 100. In doing so, filter 502 appends an identifier at
the beginning of the HTTP request, for authentication pur-
poses. The re-submitted HTTP request is indicated by a
circle-2 in FIG. 5. When the re-submitted HTTP request
arrives at server computer 100 it is routed to an authenticator
504, which authenticates the request based on its appended
identifier. Once authenticated, the identifier is removed from
the re-submitted HTTP request, and it is processed by server
computer 100. In processing the re-submitted HTTP request,
server computer dynamically generates a web page 506
using a dynamic web page generator 508. Web page 506
references one or more protected images 108.

When web page 506 is generated, server computer 100
sends it within an HTTP response to the address of the
originator of the request. The HTTP response is indicated by
a circle-3 in FIG. 5. Since the re-submitted HTTP request
originated from filter 502 of server computer 100, the HTTP
response with web page 506 is sent to server computer 100.
The response is routed to filter 502 for further processing.

Filter 502, after receiving the HTTP response with web
page 506, can proceed to generate substitute data 124, and
to generate a modified web page 120 using web page
modifier 122, as is described hereinabove with reference to
FIG. 1. Modified web page 120 contains a reference to
substitute data 124, instead of a reference to protected
images 108.

Modified web page 120 is included within an HTTP
response and sent back to client computer 106. The HTTP
response including modified web page 120 is indicated by a
circle-4 in FIG. 5. The four indicators, circle-1, circle-2,
circle-3 and circle-4 taken together illustrate the data flow
from an original HTTP request to a final HTTP response.

As mentioned hereinabove, in a preferred embodiment of
the present invention substitute data 124 can be rendered so
as to generate images visually equivalent to protected
images 108, in which case the user can view the content of
protected images 108 without downloading unmodified pro-
tected image data to client computer 106. For example,
substitute data 124 can be encrypted image data.

Reference is now made to FIG. 6, which is a simplified
flowchart of a method for protecting digital images that are
referenced in dynamically generated web pages, in accor-
dance with a preferred embodiment of the present invention.
The flowchart is divided into three columns. The leftmost
column includes steps performed by a user, the second
column from the left includes steps performed by a client
computer, and the rightmost column includes steps per-
formed by a server computer connected to the client com-
puter over the Internet or such other network of computers.

US 6,353,892 B2

17

At step 602 the client computer initiates a connection to
the web server. At step 604 the server computer opens a
communication socket between the client computer and the
server computer. At step 606 the user opens a URL for an
active server page in his web browser, or another such URL
that includes a request for dynamically generating a web
page. At step 608 the client computer issues an HTTP
request for an active server page to the server computer. At
step 610 the server computer receives the request for the
active server page from the client computer. At step 612 the
server computer appends an identifier at the beginning of the
HTTP request, and at step 614 the server computer
re-submits the HT'TP request to the server computer with the
appended identifier. At step 616 the server computer
receives the re-submitted HTTP request and authenticates
the request based on its appended identifier. If the request is
authenticated, then at step 618 the server computer removes
the appended identifier from the request, and at step 620 the
server processes the request and dynamically generates a
web page that references one or more protected images.

At step 622 the server incorporates the dynamically
generated web page within an HTTP response and sends it
to an address of the originator of the HTTP request.
Specifically, since the HTTP request was re-submitted by the
server computer at step 614, the server computer is the
originator of the re-submitted HTTP request and, as such,
the HTTP response containing the web page referencing
protected images is transmitted to the server computer. It can
be appreciated that authentication at step 616 is necessary in
order to control HTTP responses that contain unmodified
web pages referencing protected image data, so that they are
only transmitted to server computer 100, and not to any
other computers.

At step 624 the server computer processes the dynami-
cally generated web page similar to the processing described
hereinabove with reference to FIG. 2. Specifically, the server
generates a modified web page having references to substi-
tute data in place of the references to protected images. At
step 626 the server computer sends an HTTP response
including the modified web page to the client computer, and
at step 628 the client computer receives the HTTP response.
At step 630 the client’s web browser renders the modified
web page and, in doing so, encounters the references to
substitute data and, in turn, requests the substitute data from
the server computer. At step 632 the server computer
receives the request for the substitute data, and at step 634
the server computer sends the substitute data to the client
computer. At step 636 the client computer receives the
substitute data, and at step 638 the client computer’s web
browser processes the substitute data and renders it embed-
ded within the web page. Finally, at step 640 the user views
the web page.

As described hereinabove, in a preferred embodiment of
the present invention, when a user views a web page
containing protected images, the image data sent from a
server computer to the user’s client computer is substitute
data. For example, the substitute data can be encrypted
image data. This ensures that the user cannot use his web
browser to save an unmodified version of the protected
image. Moreover, as described hereinabove, in a preferred
embodiment of the present invention, software included
within the web browser is used to prevent the user from
saving a displayed image using the “Save Image As . . . ”
option. The “Save Image As . . . ” selection can be disabled,
or alternatively it can be modified so that substitute image
data is provided instead of protected image data.

However, it is apparent to those skilled in the art that in
order to display a protected image within a web page, at

10

15

20

25

30

35

40

45

50

55

60

65

18

some level within the operating system decoded pixel data
has to be available. Typically, a video card displaying image
data on a video monitor stores the image data within a video
display buffer. As such, even if the image data is encrypted
when downloaded to the client computer, within the client
video buffer the data is available as raw pixel data, and at
some level the encrypted data is decoded before it can be
displayed.

Pixel data stored within a video display buffer is suscep-
tible to unauthorized use or copying, since an operating
system typically enables a programmer to access data in the
video display buffer. For example, the Windows operating
system of Microsoft Corporation of Redmond, Wash., pro-
vides system functions, such as the familiar BitBlt function,
for accessing pixel data within the video display buffer.
Moreover, such operating systems provide high level
functions, such as the Print Screen function, which serve to
copy data from the video display buffer to another memory
buffer, such as a clipboard. Once image data has been copied
to a clipboard, it can be easily saved and used for unautho-
rized purposes.

In a preferred embodiment, the present invention prevents
a user from using Windows API functions, such as BitBlt,
StretchBlt, PlgBlt, GetPixel and GD132, to copy protected
image data, by including software within the user’s web
browser that substitutes other functions for those Windows
API functions. For example, the software within the user’s
web browser provides a substitute BitBlt function, which is
invoked instead of the standard system BitBlt function when
the user issues a command to copy data from the video
display buffer. The substitute BitBlt function includes spe-
cial logic for dealing with protected image data, but is
otherwise identical to the standard system BitBlt function.
The special logic serves to supply substitute pixel data
instead of protected image data, so that the data that is
copied to the user’s clipboard is different from the raw pixel
data of protected images. For example, the special logic can
compose watermarks and/or a text message onto protected
image pixel data, or it can encrypt protected image pixel
data, or it can supply a completely white image instead of a
protected image.

By providing a substitute BitBlt function, or such other
system level function, the present invention prevents unau-
thorized copying and use of protected image data whenever
an attempt is made to copy from the video display buffer.
This includes a user’s invocation of the Print Screen
command, as well as another software application, such as
an image editing application, running within or external to
the user’s web browser, attempting to copy and paste from
the video display buffer.

Reference is now made to FIG. 7, which is a simplified
illustration of a system for preventing unauthorized copying
of digital images within a client computer, in accordance
with a preferred embodiment of the present invention. Client
computer 106 displays an image accessed over the Internet
using a web browser. The image may be an unprotected
image 702 or substitute data for a protected image 704. A
user issues a command in an attempt to copy the image from
his video display buffer. For example, the user may press the
“Print Scrn” button on his keyboard, or invoke such other
screen capture command, in order to copy the data in the
video display buffer onto his clipboard. For another
example, the user may try to copy and paste the image from
his web browser window into a window of another software
application.

The user’s command invokes an operating system level
function 706 used to access pixel data within the video

US 6,353,892 B2

19

buffer of client computer 106. For example, it may invoke
the Windows BitBlt function. Typically, such a function 706
copies pixel data from the video buffer onto a clipboard.

In a preferred embodiment of the present invention,
software such as a Netscape plug-in or an Internet Explorer
Active-X control is used to modify operating system func-
tion 706, by introducing additional programming logic to be
used when attempting to access pixel data from protected
images. Modification of operating system function 706 is
preferably accomplished by providing a substitute function
of the same name, which supersedes and is invoked instead
of the standard system function.

When attempting to access pixel data from protected
image 704, operating system function 706 routes the request
to an alternate processing unit 708. Alternate processing unit
708 can prevent any copying of pixel data, or it can modify
the pixel data so as to watermark or otherwise modify the
protected image. Similarly, alternate processing unit 708 can
output pixel data for a pre-determined image, unrelated to
the protected image.

On the other hand, when attempting to access unprotected
image 702, the additional programming logic is avoided, and
the standard processing is applied. Preferably this is accom-
plished by calling the standard system level function from
within the substitute function.

Reference is now made to FIG. 8, which is a simplified
flowchart of a method for preventing unauthorized copying
of digital images within a client computer, in accordance
with a preferred embodiment of the present invention. The
flowchart is divided into two columns. The leftmost column
includes steps performed by a user and the rightmost column
includes steps performed by a client computer.

At step 802 the user opens a web page in his web browser.
At step 804 the client computer renders the web page
including an embedded image. At step 806 the user views
the web page, and at step 808 the user attempts to copy the
embedded image by executing a command to copy pixel
data of the image from a video buffer to a clipboard. For
example, the user may execute the Print Screen or such other
screen capture command.

At step 810, in response, the client computer calls an
operating system function, such as the Windows BitBIt
function, to extract pixel data from the video buffer and copy
it to the clipboard. At step 812 control logic passes to a
substitute function, and a test is made as to whether or not
the image data in the video buffer is protected. If so, then at
step 814 processing jumps to step 818 where substitute
program code replaces the requested pixel data with substi-
tute data, and at step 820 the substitute data is returned by
the operating system function. If the image data in the video
buffer is not protected, then processing jumps to step 816
following step 812, and the requested pixel data is returned
by the operating system function, as usual.

At step 822 the data returned from the operating system
function is written to the clipboard and at step 824 the user
pastes the data from the clipboard into a window of another
software application, or saves it into his computer. Since
substitute data was used to replace protected pixel data, the
user is unable to copy unmodified pixel data from the
protected image.

The system and method described with reference to FIG.
1 and FIG. 2 deal with protection of digital images that are
located on the same server computer as the web page that
references them. In such a scenario, the present invention
preferably uses filtering software residing on the server
computer to generate substitute image data and a modified
web page, as described hereinabove.

10

15

20

25

30

35

40

45

50

55

60

65

20

In some cases the protected images may not reside on the
same computer as the web page that references them, and the
filter software that modifies web pages and generates sub-
stitute image data may not reside on the computer that
houses the protected images. Thus it may not be possible to
generate substitute image data on the computer that houses
the protected images.

In a preferred embodiment of the present invention, the
protected images are first downloaded to the computer that
houses the web page, so that substitute data can be generated
at such computer. However, this process is preferably care-
fully arranged, so as not to compromise the protection of
such images. Specifically, the references to the images
within the web pages should be disguised in aliases, so that
a user cannot identify the protected images and access them
by issuing a direct HT'TP request to the computer that houses
them.

The computer that houses the web page should preferably
also contain a table of aliases, for converting image file
name aliases into IP addresses and true file names. In this
way, a user accessing such a web page can only see aliases
for IP addresses of protected images, and cannot access them
directly.

Reference is now made to FIG. 9, which is a simplified
illustration of a system for copyright protection of digital
images residing on a computer that are referenced in a web
page residing on a different computer. Client computer 106
contains a web browser 112, which issues an HTTP request
for a web page from server computer 900. The requested
web page, 902, resides on server computer 900 (server
computer #1), but it references a protected image 904 that
resides on a different server computer 906 (server computer
#2). As a result, server computer 900 may not be able to
generate substitute data, such as encrypted image data, for
protected image 904 until it first downloads protected image
904.

Moreover, in order to protect image 904 from unautho-
rized access, the reference in web page 902 to image 904 is
done through an alias 908. That is, the reference does not
specify the IP address and true file name of image 904;
instead, it specifies an alias 908, which only server computer
900 can interpret. In a preferred embodiment of the present
invention, server computer 900 maintains a table with
entries that convert each alias 908 for a protected image into
an IP address and true file name.

When server computer 900 receives the HTTP request for
web page 902 from client computer 106, it parses web page
902 and identifies therewithin an image reference with an
alias 908. Server computer 900 deciphers alias 908 to
determine the IP address and true file name for protected
image 904. Server computer 900 downloads protected image
904 from server computer 906, and uses it to generate
substitute data 910.

Server computer 900 generates substitute data 910, and
generates a modified web page 912 using a web page
modifier 914. Web page modifier replaces the reference to
the alias 908 within web page 902 by a reference to
substitute data 910. Modified web page 912 is sent to client
106 within an HTTP response, and web browser 112 dis-
plays modified web page 912 with substitute data 910
embedded therewithin. In a preferred embodiment of the
present invention, web browser 112 contains a substitute
data processor 126 that is used to render substitute data 910.

Reference is now made to FIG. 10, which is a simplified
flowchart of a method for copyright protection of digital
images residing on a computer that are referenced in a web
page residing on a different computer. The flowchart is

US 6,353,892 B2

21

divided into four columns. The leftmost column includes
steps performed by a user, the second column from the left
includes steps performed by a client computer, the third
column from the left includes steps performed by a first
server computer (server computer #1), and the rightmost
column includes steps performed by a second server com-
puter (server computer #2).

At step 1002 a user opens a URL for a web page in his
web browser. At step 1004 the client computer issues an
HTTP request for the web page to server computer #1. At
step 1006 the first server computer receives the HTTP
request for the web page. The web page references a
protected image located on the second server computer, but
the protected image is not referenced by name. Rather, the
protected image is referenced by an alias. At step 1008 the
first server computer looks up the IP address and true file
name for the protected image, from a table with entries for
mapping aliases to IP addresses and true file names.

At step 1010 the first server computer requests the pro-
tected image data from the second server computer. At step
1012 the second server computer receives the request from
the first server computer, and at step 1014 the second server
computer sends the protected image data to the first server
computer. At step 1016 the first server computer receives the
protected image data from the second server computer, and
at step 1018 the first server computer replaces the protected
image data with substitute data. Alternatively, the first server
computer may generate substitute data and keep the pro-
tected image data intact, or it may use substitute data that is
pre-defined image or text data.

At step 1020 the first server computer modifies the web
page by replacing references to the aliased image with
references to the substitute data. At step 1022 the first
computer sends an HTTP response including the modified
web page to the client computer. At step 1024 the client
computer receives the HTTP response with the modified
web page, and begins to render the web page using its web
browser. The web browser encounters the reference to the
substitute data and, in response, at step 1026 the client
computer requests the substitute data from the first server
computer. At step 1028 the first server computer receives the
request for the substitute data, and at step 1030 the first
server computer sends the requested substitute data to the
client computer. At step 1032 the client computer receives
the substitute data, and at step 1034 the client computer web
browser processes the substitute data in order to embed it
within the web page. Finally, at step 1036 the user views the
requested web page with the image embedded, but without
the protected image data having been downloaded to the
client computer, and without the identity (i.e., IP address and
true file name) of the protected image having been disclosed.
User Interface

FIGS. 11-18 illustrate a user interface for a software
management protection tool operative in accordance with a
preferred embodiment of the present invention. Such a
management protection tool is described hereinabove with
reference to FIG. 3 and FIG. 4, and enables an administrator
to set protection status for images residing on one or more
web server computers.

Reference is now made to FIG. 11, which illustrates a user
interface dialogue box for adding a new site, within a
protection management tool operative in accordance with a
preferred embodiment of the present invention. When a user
launches the protection management tool for the first time,
a New Site dialogue box, such as the one illustrated in FIG.
11, opens. The New Site dialogue box can also be opened by
the user at any later time, whenever he wants to administer

10

15

20

25

30

35

40

45

50

55

60

65

22

a new HTTP site that is not already listed in a site list
maintained by the protection management tool, by clicking
on the “New Site . . . ” button in the Access Site dialogue box
illustrated in FIG. 12, or by clicking on the “New . . .”
button in the Site List dialogue box illustrated in FIG. 17.
The New Site dialogue box prompts the user to identify the
new site he wishes to administer by entering an IP address
for the site and a port for the site. A default value of 80 for
the port is used, since port 80 is the standard HTTP port. The
user is also prompted to enter an optional alias for the site,
for quick reference.

After entering the site identification data, the user can
click on “OK” to add the site to the site list. He can also click
on “Cancel” to cancel his entries. Clicking on OK or on
Cancel cause the dialogue box to close. The New Site
dialogue box can also be closed by clicking on the “X” in the
upper right corner of the dialogue box window, as is
typically done to close windows in the Windows operating
system.

Reference is now made to FIG. 12, which is an illustration
of a user interface dialogue box for accessing a site, within
a protection management tool operative in accordance with
a preferred embodiment of the present invention. After the
user adds a new site to the site list in the New Site dialogue
box illustrated in FIG. 11, an Access Site dialogue box, such
as the one illustrated in FIG. 12, opens. The Access Site
dialogue box can also be opened by the user at any time,
whenever he wants to access sites in the site list, by clicking
on the “Modify” button in the Site List dialogue box
illustrated in FIG. 17. The Access Site dialogue box prompts
the user to select a specific site to administer by entering site
identification information. For ease of use, the user can click
on the down arrow shown at the right, and in response the
protection management tool displays a drop-down menu
with a list of all sites included in the site list. The user can
then select a site from the menu, and the site identification
information is automatically entered in the dialogue box.

The Access Site dialogue box also prompts the user to
enter a password. The password for a site is first set when
copyright protection software is installed on a web server
computer. At the time of installation, the web administrator
sets an initial password for the web site, together with other
server parameters. The web site password can be modified at
a later time, as described hereinbelow with reference to FIG.
16.

The user can check the “Save Password” box if he wants
the protection management tool to save the password he
enters, for automatic use when he subsequently accesses the
site. After entering the required data, the user can click the
“OK”button to access the site, or he can click the “Cancel”
button to cancel his entries. Clicking on OK or on Cancel
cause the dialogue box to close. The Access Site dialogue
box can also be closed by clicking on the “X” in the upper
right comer of the dialogue box window, as is typically done
for windows in the Windows operating system.

If the user clicks the “OK” button then his password is
authenticated. If the password is correct, the user is granted
access to the site, and the main screen illustrated in FIG. 13
is opened. If the password is incorrect, the user is so notified
and given a limited number of tries to enter the correct
password. In an alternate embodiment of the present
invention, the user may be given an unlimited number of
tries to enter the correct password.

The Access Site dialogue box also enables the user to
open the New Site dialogue box illustrated in FIG. 11, by
clicking on the “New Site . . . ” button.

Reference is now made to FIG. 13, which is an illustration
of a user interface screen for setting protection status, within

US 6,353,892 B2

23

a protection management tool operative in accordance with
a preferred embodiment of the present invention. The screen
illustrated is an Explorer-type screen, with a left panel
displaying hierarchical folder information and a right panel
displaying image file information. At the left of each dis-
played folder name is a folder icon, color-coded to indicate
the protection status (unprotected/partially protected/
completely protected) of the folder, as described herein-
above.

The toolbar at the top of the screen indicates that the
leftmost button, “Get List”, is selected. A description of the
toolbar is provided hereinbelow with reference to FIG. 14.
The file name “index.htm]” of an HTML page that is in the
folder/Sample/csafe is highlighted in the left panel of FIG.
13. The image files referenced within index.html are dis-
played in the right panel. As shown, they are files for GIF
images. The “Status” column within the right panel indicates
that none of the images listed in the panel are protected,
since no protection icons appear. The protection manage-
ment tool enables the user to select one or more of the listed
images for setting protection. The user selects one or more
images by clicking on their file names with the mouse, and
using the “Shift” and “Control” keys to select a contiguous
group of names or multiple names, respectively, as is the
well-known standard for Windows operating systems. After
selecting one or more images, the user clicks on the “Pro-
tect” button to have protection settings applied thereto.

In a preferred embodiment of the present invention, the
“Protect” button toggles the current protection settings, so
that images that are unprotected become protected, and
images that are protected become unprotected. In an alter-
nate embodiment of the present invention, the user interface
may not permit a user from selecting at one time both images
that are protected and images that are unprotected, so that
each application of protection settings either sets the status
of unprotected images to protected or sets the status of
protected images to unprotected.

As described hereinabove, the user can select one or more
HTML files, to apply protection settings to all images
referenced therein. The user can also select one or more
folders, to apply protection settings to all images located
therein. By navigating through the file system, the user can
browse the web site being administered with the screen of
FIG. 13, and select folders, HTML pages and other types of
web pages, and images to protect or to unprotect.

Reference is now made to FIG. 14, which is an illustration
of a tool bar within a protection management tool operative
in accordance with a preferred embodiment of the present
invention. The tool bar illustrated in FIG. 14 is the one
appearing at the top of the screen illustrated in FIG. 13. It
contains eight buttons, entitled “Get List”, “Protect”,
“Tags”, “Submit”, “Mirrors”, “Sites”, “Server” and “Help”.
The “Get List” button is used to browse the web site being
administered using the screen illustrated in FIG. 13 herein-
above. The “Protect” button is used to apply protection
settings to one or more selected images, as described here-
inabove with reference to FIG. 13.

The Tags button can be used when a user selects one or
more HTML page file names, to protect images referenced
within protection tags in the selected HTML, pages. As
described hereinabove, tags such as <!protect> and
<!/protect> are used to delineate one or more sections within
an HTML page, and the images referenced within the tagged
sections can be protected by selecting the HTML file name
and clicking on the “Tags” button. In distinction to the
Protect button which serves to protect all of the images
within selected HTML pages, the “Tags” button only pro-

10

15

20

25

30

35

40

45

50

55

60

65

24

tects images referenced within the tagged sections of
selected HTML pages.

The “Submit” button is used to confirm protection settings
made by the user, and transmit them to the web server
computer for application. When the user clicks on the
“Submit” button, the protection settings he edited are sent to
the web server computer and incorporated into the protec-
tion status database, as described hereinabove with reference
to FIG. 3 and FIG. 4. Until the user clicks on the “Submit”
button, the protection settings he edited are only displayed
within the protection management tool by his local com-
puter. Only when he clicks the “Submit” button are his
settings actually applied. If the user does not click on the
“Submit ” button, then all of the protection settings he edited
will not take effect, and the protection settings will remain
at their former state if he closes the screen.

The “Mirrors” button is used to identify web sites that are
mirror sites (i.e., identical sites), as described hereinbelow
with reference to FIG. 18. The “Site” button is used for
updating the list of administered sites, as described herein-
below with reference to FIG. 17. The “Server” button is used
to modify server parameter settings, as described hereinbe-
low with reference to FIG. 15. The server parameters are
first initialized when the copyright protection software is
installed on the web server computer.

The “Help” button is used to invoke on-line help and
documentation, as is typical for Windows applications.

Reference is now made to FIG. 15, which is an illustration
of a user interface dialogue box for setting server parameters
within a protection management tool operative in accor-
dance with a preferred embodiment of the present invention.
A Server Settings dialogue box is invoked when a user clicks
on the “Server” button in the tool bar illustrated in FIG. 14.

The topmost parameter is the IP address for the web
server. The parameter setting indicated in FIG. 15 specifies
an IP address of 192.168.1.39 and a port of 80. The second
parameter is the root directory for the web server, relative to
which folder names and file names are specified. The
parameter setting indicated in FIG. 15 specifies a root
directory of d:/Inetpub/wwwroot. The third parameter is the
file name of a default web page that is displayed when a
client first connects to the web server. The parameter setting
indicated in FIG. 15 specifies a default web page default.htm
(residing in the root directory).

The fourth parameter specifies what is to be performed
when a protected image is requested by an unsupported web
browser. An unsupported web browser is one for which a
substitute data processor, such as the one indicated in FIG.
1, is not installed. For such a browser the web server cannot
send substitute data, such as encrypted image data, since the
browser will not be able to render it. Instead, the web server
must send an image in a standard format such as JPEG and
GIF, which the browser can render.

In a preferred embodiment, the protection management
tool offers three options for dealing with unsupported brows-
ers: (i) allow protected images to be transmitted without
protection; (ii) replace tags for protected images with alter-
nate HTML tags; and (iii) watermark protected images. The
fourth parameter specifies which of these three options the
user chooses. The parameter setting indicated in FIG. 15
specifies the third option; namely, that tiled watermarks are
to be composited onto the protected image, and the resulting
watermarked image is to be transmitted instead of the
protected image itself. Preferably, this is the default param-
eter setting. The watermarked image is transmitted in a
standard image format, such as JPEG and GIF, and, as such,
it can be displayed by the web browser.

US 6,353,892 B2

25

The fifth parameter indicates the replacement tag to be
substituted for a reference to a protected image in an HTML
page, when the client is using an unsupported browser and
when the second option above is chosen for handling
unsupported browsers. The parameter setting indicated in
FIG. 15 specifies that the replacement tag to be used is an
IMG tag with a source file name of /default/Err.gif.
Preferably, this is the default parameter setting.

The sixth parameter indicates the image of a watermark to
be used for watermarking protected images, when the client
is using an unsupported browser and when the third option
above is chosen for handling unsupported browsers.
Typically, the watermark image is a small image, and it is
tiled so that the watermark appears repetitively in a check-
erboard fashion, or other such fashion, over a protected
image that is watermarked. The parameter setting indicated
in FIG. 15 specifies that the watermark image is in a file
named watermark.gif. The seventh parameter indicates the
saturation, or opacity level, with which the watermark is to
be composited over a protected image, when the client is
using an unsupported browser. A saturation of 0.0 is fully
transparent, and a saturation of 1.0 is fully opaque. The
parameter setting indicated in FIG. 15 specifies a saturation
level of 85%. Preferably, this is the default parameter
setting. The eighth parameter indicates a transparent color
for the watermark; i.e., a color to be treated as background
and not changed by the watermark. This ensures that back-
grounds of protected images are not watermarked. The
parameter setting indicated in FIG. 15 indicates a watermark
transparent color of white (255). Preferably, this is the
default parameter setting.

The next three parameters are disabled so that they cannot
be edited. They indicate the DLL version of the copyright
protection software, the Netscape version and the ActiveX
version, respectively.

The twelfth parameter indicates the directory in which
substitute data, such as encrypted images, are cached for
efficient re-use upon subsequent requests for the same pro-
tected images. The parameter setting indicated in FIG. 15
indicates the directory/cache (relative to the root directory
d:/Inetpub/wwwroot). The thirteenth parameter indicates the
length of time during which a file is maintained in the cache
directory. The parameter setting indicated in FIG. 15 indi-
cates a duration of 1,440 minutes. After this duration a
cached file is purged from the cache. The fourteenth param-
eter indicates the frequency with which the cache is
monitored, to determine which files are to be purged from
the cache. The parameter setting indicated in FIG. 15
indicates a monitoring frequency of every 1,440 minutes.

The fifteenth parameter indicates a file name into which a
log file is written. The parameter setting indicated in FIG. 15
indicates a file name of cSafelog.txt. This file will receive
log data for the copyright protection software running on the
server. The log data may include information such as
requests for protected image data, the clients making the
requests and the data transmitted to them in response. The
sixteenth parameter indicates the level of detail to be written
to the log file. Level zero corresponds to the minimum of
detail—only critical information, and higher levels corre-
spond to additional detail.

The seventeenth parameter indicates the e-mail address of
the administrator of the web server computer, to be con-
tacted as necessary. For example, the administrator can be
contacted whenever there is upgraded copyright protection
software available, or whenever new products are available.

After setting values for the server parameters, the user can
click on the “OK” button to apply the new parameter

10

15

20

25

30

35

40

45

50

55

60

65

26

settings. The user can also click on “Cancel” to cancel his
entries. If the user wishes to modify the password for the
server, he can click on the “Modify Password” button, which
opens the “Modify Password” dialogue box, as described
with reference to FIG. 16.

Reference is now made to FIG. 16, which is an illustration
of a user interface dialogue box for modifying a password
for accessing a web server, within a protection management
tool operative in accordance with a preferred embodiment of
the present invention. A Modify Password dialogue box is
invoked when a user clicks on the “Modify Password”
button in the Server Settings dialogue box illustrated in FIG.
15. The Modity Password dialogue box prompts the user for
the typical information used when changing a password. The
user is prompted to enter the current password, the new
password and a confirmation of the new password. The user
may also check a box indicating that the password is to be
saved by the protection management tool, so that the user
can subsequently access the web site without having to
specify the password again (as long as the password remains
valid). After providing the requested passwords, the user can
click on the “OK” button to effectuate his change. He can
also click on the “Cancel” button to cancel his entries.

In a preferred embodiment of the present invention, the
protection management tool sets a maximum expiration date
for a password, thus forcing the user to update his password
from time to time.

Reference is now made to FIG. 17, which is an illustration
of a user interface dialogue box for a site list, within a
protection management tool operative in accordance with a
preferred embodiment of the present invention. The “Site
List” dialogue box is invoked when a user clicks on the
“Sites” button in the tool bar illustrated in FIG. 14. The Site
List dialogue box lists all of the sites included in the site list
used by the protection manager tool. The sites are listed by
alias name, or by IP address for those sites that do not have
an alias.

A user can add a new site to the list by clicking on the
“New . .. ” button. A user can modify the settings for a site
already included in the list by clicking on the “Modify . . .
” button. A user can delete sites from the site list by selecting
one or more sites listed in the dialogue box, and clicking on
the “Delete” button. The “Delete” button is shown disabled
in FIG. 17, since none of the sites listed are selected. The
user closes the Site List dialogue box by clicking on the
“Close” button or on the “X” at the top right corner of the
dialogue box window.

Reference is now made to FIG. 18, which is an illustration
of a user interface dialogue box for defining mirror sites,
within a protection management tool operative in accor-
dance with a preferred embodiment of the present invention.
Mirror sites are identical web sites, used for the purpose of
proliferating files on multiple server computers, so as to
balance the processing load over multiple computers, and so
as to make it easier for users around the world to access files.
It is the responsibility of web administrators to ensure that
mirror sites are kept current.

In a preferred embodiment of the present invention,
protection settings edited by a user for a specific web site can
be applied to one or more mirror sites as well, without the
need for the user to explicitly edit the settings on each
individual mirror site. The protection management tool
preferably enables a user to identify sites that are mirror
sites, and manage their protection settings simultaneously. A
Mirror Sites dialogue box is invoked when a user clicks on
the “Mirrors” button in the tool bar illustrated in FIG. 14.
The Mirror Sites dialogue box is invoked while a user is

US 6,353,892 B2

27

accessing a specific site, and the information it displays is
relative to this specific site currently being accessed.

As shown in FIG. 18, the Mirror Sites dialogue box has
a left panel indicating sites from among the site list that are
mirrors of the site being accessed, and a right panel indi-
cating sites from the site list that are not mirrors of the site
currently being accessed. The user can click on one or more
of the sites listed in the right panel to select them, and then
click on the “<Add to Mirrors” button to make them mirror
sites of the site being accessed. Clicking on the “<Add to
Mirrors” button results in the selected sites being moved
from the right panel to the left panel.

The user can check a box to update mirrors automatically,
and then any edits he makes to parameter settings for the site
currently being accessed will automatically be submitted to
the mirror sites whenever the user clicks on the “Submit”
button in the tool bar illustrated in FIG. 14, to submit his
edits to the web server computer. This mode of automatic
update results in protection settings being updated incre-
mentally in mirror sites each time the user edits them in one
of the sites. However, if one or more edits are not synchro-
nized with mirror sites, the mirror sites will lose synchro-
nization and will not regain synchronization as future edits
are made, even if the future edits are proliferated to the
mirror sites. This loss of synchronization can happen, for
example, if one of the mirror sites is not operational at the
time the user makes his edits to the protection settings or, for
example, if a mirror site is removed from the list of mirror
sites.

The user can check a box to update mirrors automatically,
and then any edits he makes to parameter settings for the site
currently being accessed will automatically be submitted to
the mirror sites whenever the user clicks on the “Submit”
button in the tool bar illustrated in FIG. 14, to submit his
edits to the web server computer. This mode of automatic
update results in protection settings being updated incre-
mentally in mirror sites each time the user edits them in one
of the sites. However, if one or more edits are not synchro-
nized with mirror sites, the mirror sites will lost synchroni-
zation and will not regain synchronization as future edits are
made, even if the future edits are proliferated to the mirror
sites. This loss of synchronization can happen, for example,
if one of the mirror sites is not operational at the time the
user makes his edits to the protection settings or, for
example, if a mirror site is removed from the list of mirror
sites.

In order to bring mirror sites up-to-date with a site
currently being accessed, the Mirror Sites dialogue box also
has a button for sending the current settings to the mirror
sites. Clicking on this button causes all of the protection
settings to be sent to the mirror sites listed in the left panel,
and not merely the incremental edits that the user made. This
serves to re-synchronize the mirror sites with the site cur-
rently being accessed, and ensures that the protection set-
tings are the same at the mirror sites and the site currently
being accessed.

Sending all of the protection settings to mirror sites
typically requires a lot of bandwidth. If only a few of the
mirror sites need to be re-synchronized, the user can tem-
porarily move the other mirror sites from the left panel to the
right panel, send the current protection settings to
re-synchronize the mirror sites remaining in the left panel,
and then move the other mirror sites from the right panel
back to the left panel. This reduces the number of sites to
which the protection settings have to be transmitted. The
Mirror Sites dialogue box can be closed by clicking on the
“Close” button, or by clicking on the “X” at the upper right
hand corner of the dialogue box window.

10

15

20

25

30

35

40

45

50

55

60

65

28

Reference is now made to FIG. 19, which is an illustration
of a virtual directory properties file residing on a web server
computer in accordance with a preferred embodiment of the
present invention. The virtual directories property file is a
text file named VirtualDirectories.properties, preferably
used by the web server to (i) protect images in dynamically
generated web pages, and (ii) protect images residing on
other server computers. This file contains the names of
directories in which dynamically generated pages and/or
dynamically generated images are stored, along with a
protection status identifier for such directories. Protection
status identifiers include PROTECT, TAGS and ACCES-
SIBLE. PROTECT indicates that the pages and images in
the directory are protected. TAGS indicates that only images
referenced within protect tags of HTML pages in the direc-
tory are protected. ACCESSIBLE indicates that the pages
and images in the directory are unprotected.

The file illustrated in FIG. 19 indicates that a directory
named/cgi-bin/ (relative to the root directory) is assigned
PROTECT status. Thus pages and images in /cgi-bin/ that
are dynamically generated will be protected. FIG. 19 also
indicates that a directory named/scripts/ (relative to the root
directory) is assigned TAGS status. Thus pages in /scripts/
that are dynamically generated will be protected to the
extent that images referenced within their protect tags are
protected.

FIG. 19 also indicates an alias for images on another
server computer that are to be protected. The alias is
/lpis.htm?, and the true address is http://
101.345.56.52:8081/. Thus /Ipis.htm and /lpis.html are inter-
preted by the web server as aliases for the root directory of
the web server with IP address 101.345.56.52 and port 8081.

The VirtualDirectories.properties file is manually or auto-
matically edited by a user whenever he wishes to protect
dynamically generated web pages, dynamically generated
images, and images residing on another server computer.
Implementation Details

In a preferred embodiment of the present invention, when
the client web browser has installed a substitute data pro-
cessor such as a Netscape SmartUpdate or plug-in, or an
Internet Explorer ActiveX control, as indicated in FIG. 1, the
substitute data used for protected images are encrypted
images. That is, (i) protected images are encrypted on the
web server computer, using an encryption algorithm and an
encryption key as is well known to those skilled in the art;
(i) references to the protected images are replaced with
references to encrypted images in the HTML pages that
reference the protected images, and (iii) the encrypted
images are transmitted from the web server to client com-
puters. The client computers use substitute data processing
software to decode the encrypted images and to render them
for display on a video monitor.

In order for this to work, it is necessary for the substitute
data processor on the client computer to know the encryp-
tion algorithm being used by the web server and the encryp-
tion key. This presents a potential security hole, in that
someone could decipher this encryption information from
the substitute data processor by reverse engineering, and use
it for stealing copyright protected images.

In a preferred embodiment of the present invention, the
web server regularly changes the encryption key, and pos-
sibly also the encryption algorithm. When each such change
is made, the server computer transmits updated substitute
data processing software to each registered client computer,
as soon as such client computer connects to the server. This
ensures that the encryption key, and possibly also the
encryption algorithm, are changed regularly, thus thwarting

US 6,353,892 B2

29

attempts to steal copyright protected images by reverse
engineering substitute data processors. Preferably these
updates are done frequently enough so that the duration
between updates is likely to be less than the time it typically
takes to discover the encryption information by reverse
engineering.

In a preferred embodiment of the present invention, each
client that downloads a substitute data processor from a
server computer is registered in a user database. This makes
it possible to keep track of clients and send them updated
software automatically. Alternatively, version information
for a substitute data processor in a client computer may be
stored in a “cookie,” or other such file used by web servers
to identify client information. Using the cookie, a web server
can automatically determine if a client is using out-dated
software, and, if so, automatically update the client software.
Yet another alternative is for the web server to do nothing,
in which case the client software will no longer be able to
render encrypted images after the encryption key and/or
algorithm is updated, and the user will have to download
updated software at his own initiative.

What follows is a detailed description of a preferred
embodiment of the present invention, as it operates to block
screen capture utilities within a Macintosh operating system.

For the Macintosh operating system, a plugin for
Netscape and Internet Explorer is preferably used. The
plugin consists of three parts—the plugin proper, a system
extension (also referred to as INIT) and an executable client
library. The system extension and the client library are
downloaded from a web server as needed, as described
hereinbelow.

The plugin is preferably placed in the Netscape or Internet
Explorer Plugins folder. The system extension and the client
library are preferably installed into the Extensions Folder in
the System folder of the user’s boot disk. The system
extension is an invisible file, and contains an INIT resource
that “patches” system calls at boot time as needed, in order
to enable the plugin to circumvent screen capture programs.

Preferably, the system extension does not do processing
itself, but instead calls the plugin, which in turn sends a
patch through to the client library. The client library is
preferably a MacOS shared library, and contains program-
ming code for patches and for rendering images onto a
screen. The provides the capability to update code without
downloading the entire plugin.

In order to view protected images, a user is first required
to download the plugin and INIT. A user then runs an
installation program to install the plugin into the Netscape
Navigator Plugins folder or the Internet Explorer Plugins
Folder. The user reboots his computer in order for the INIT
to apply its system patches.

When the plugin is activated, it preferably reads a con-
figuration file to determine if the client library or system
extension needs up be updated. If the configuration file is
missing, or if the current date and time is greater than the
next update check time in the configuration file, the plugin
downloads a new configuration file that specifies the latest
version of the client library and the system extension. If the
current version of the client library and/or the system
extension on a client computer is not the latest version, then
the plugin downloads the latest version of the client library
and/or the system extension.

Preferably the configuration file includes (i) a date for
next update check, (ii) a client library version number, (iii)
a system extension version number, (iv) a list of capture
application types, (v) a list of capture control panels and
extensions, (vi) a list of resource types, and (vii) a list of
non-blockable control panels and extensions.

15

20

25

30

35

40

45

50

55

60

65

30

The format for the date is of the form:

Wed Aug. 18 13:22:04 1999
The version numbers are preferably in MacOS binary
coded decimal version format, of the form:

M.m.b.srt

where M is the major version number, m is the minor
version number, b is the bug fix number, s is the stage (d, a,
b or f and rrr is the release number.

Except for the list of resource types, all list entries have
the following three-line structure:

Line 1—Name of utility/application

Line 2—4 character file type, 4 character creator type, 4
character resource type (packed)

Line 3—hex characters of pattern to match

Line 1 includes the name of the utility. This line is
preferably only used by the list of non-blockable control
panels and extensions. For other lists, the name “Unused” is
inserted. Line 2 contains three 4-character codes used to
identify capture applications and utilities. The first two
codes are the file type and creator type, and the third code
is a resource type. Line 3 contains hex codes for a pattern to
match in the resource map of the file. If no hex pattern is
used, a single carriage return is included.

An example of a configuration file is as follows:

Wed Aug. 18 13:22:04 1999
1.0.0a2

1.0.0a2

Capture AppsBegin
Unused

APPLc2gfc2gf

Unused
APPLCmApCmAp
43616D6572614D616E
Unused
APPLLu§>>Lu§>>
Unused

APPLSnpTSnpT
536E617073686F7420496E666F
Unused
APPLSNAPSNAP
53637265656E536E6170
Capture AppsEnd
CaptureUtilsBegin
Unused

CdevSnp2Snp2
536E61707A

Unused

CdevshOTshOT
53637265656E53686F74
Unused

CdevexPRexPR
4578706F737572652048657973
Unused

CdevCaptCapt
CaptureUtilsEnd
ResTypesBegin

STR#

ShOT

ShOT

US 6,353,892 B2

31

ShOT

CURS

ResTypesEnd

AbortTypesBegin

Appletalk Control Panel

Cdevatdvatdv

6B5377697463684170706C6574616C6B444C4F47

AbortTypesEnd

When it encounters a file name, the web browser normally
identifies a type of content, and pushes the file to an
appropriate plugin. However, in the present invention the
parameters passed to the plugin provide only encrypted
names for protected image files, and, as such, the web
browser typically cannot determine a content type from the
file name. Instead, the plugin decrypts the name and initiates
the download itself. This prevents others from accessing
protected images directly. Downloaded protected image files
are encrypted, and the library decrypts them before they are
used.

MacOS uses file types and creator types to identify files
and the applications that created them. The list of capture
applications from the configuration file is used by the plugin
in conjunction with creator types to determine relevant
applications to be aware of for ensuring copyright protec-
tion. If such a capture application is launched or running, the
plugin preferably hides its images.

Similarly, the list of capture control panels and extensions
from the configuration file is used by the plugin in conjunc-
tion with the list of resource types to determine if a non-
application executable, such as an extension or control
panel, is about to invoke a screen capture.

The system extension loads itself into memory at boot
time. It looks in the System Folder, Extensions Folder,
Control Panels Folder and the Start Up Items folder, for
items of type INIT, cdev, APPC, appe and APPL, which are
INITs, control panels, new control panels, applications and
application extensions. For each of these folders, the system
extension creates an information list that includes a copy of
the resource map for each such item found. The information
list is used by the plugin to locate “show stoppers;” i.c.,
utilities that cannot be blocked by known methods.

The system extension patches the following traps:
OpenPicture, ClosePicture, CopyBits, InitGraf, GetRe-
source and SetFileInfo.

A typical way for a capture utility to implement screen
capture is by creating a MacOS Picture, similar to a Win-
dows meta-file. Such a capture utility calls OpenPicture(),
CopyBits(screen,dest) and ClosePicture(), to create a PICT
file or to put the data on the global clipboard in PICT format.
If the plugin is running, the system extension patch for
OpenPicture() sets a flag so that the system extension patch
for CopyBits() knows that OpenPicture() was previously
called.

The system extension patch for CopyBits() is preferably
a head patch; i.e., the patch is applied and then the conven-
tional system CopyBits() is called. The system extension
patch for OpenPicture() preferably calls the plugin to update
rectangles of the instances, and to set a flag to indicate to the
system extension that the patch for CopyBits() should be
used. The system extension patch for CopyBits() uses the
rectangles and erases them on screen, so that the conven-
tional CopyBits() call does not gain access to unmodified
protected images. The patch for CopyBits() sets a flag
indicating that the plugin should re-draw the images.

Preferably, the plugin identifies screen capture utilities
using two methods: (i) by file type and creator, and (ii) by

10

15

20

25

30

35

40

45

50

55

60

65

32

the resource map of the file. When used together, these two
methods provide a more robust way to identify files than
does either of them alone. A Macintosh file includes two
forks—a resource fork, and a data fork. The resource fork
includes data that can be changed independently of the
executable code; for example, strings, icons and dialogue
boxes.

When the resource fork for a file is opened, an index of
the fork, referred to as a resource map, is read into RAM by
the resource manager. The resource map includes informa-
tion about resources in the file. Resource maps are chained
in a linked list—as each file in the chain is opened, a new
map is added to the chain. A descriptor for the creator of a
file is typically stored in a signature resource in the file. The
signature resource is part of a group of resources that enables
the operating system to associate icons and files with the
creator type. This information can be used by a patch for
GetResource() to identify a screen capture utility that is
running. The resource map can be searched for the signature
resource. If it can be found, then the capture utility can be
identified.

The resource type (the third 4-character code in line 2) can
also be used to identify a screen capture utility. The hexa-
decimal string (line 3) can also be used.

It is noted that the resource map cannot be used during
idle time to identify capture utilities that are applications.
The reason for this is that when the plugin is trying to
identify capture applications during idle time, the resource
map for the capture application is not in an available chain.
To overcome this, the present invention preferably uses the
system extension patch for InitGraf() to grab application
resource maps as each application is launched. When the
system extension starts up, it allocates a table to store 512
resource maps. When an application is launched, the patch
for InitGraf() is called, and the system extension stores the
current resource map in one of the 512 entries. When the
application is closed, the resource map is removed from the
table. The table is accessible to the plugin, and when the
plugin is running it examines the table to see if there is a
signature resource or other identifying trait. If so, then the
plugin can determine if a capture application is running, and
can hide protected images. The choice of 512 for the size of
the table for the resource maps is arbitrary, but has been
found to be adequate.

Because searching for utilities installed on a client com-
puter is time consuming, the system extension preferably
does the search at startup time, and stores information about
each INIT, cdev, APPC, appe and APPL file type in the
System Folder, Extensions Folder, Startup Folder and Con-
trol Panels folder. If instead the plugin was to do the search,
then the search would have to be carried out each time the
plugin is instantiated.

The system extension makes the information about the
extensions and control panels available to the plugin via
shared memory, and the plugin can quickly scan the list for
installed items that cannot be blocked.

Additional Considerations

In reading the above description, persons skilled in the art
will realize that there are many apparent variations that can
be applied to the methods and systems described. For
example, although the present invention has been described
with respect to digital images, it applies to copyright pro-
tection of other forms of multi-media referenced in web
pages as well, such as audio files, video files and slide
shows. In each case, substitute data can be used so that a user
can play or view the multi-media within the web page
without downloading an unmodified version of it into his
computer.

US 6,353,892 B2

33

For another example, the present invention can be applied
to copyright protection of text contained in web pages.
Currently, text contained in web pages can be copied by
simply selecting a section of text by dragging a mouse
pointer thereover, and invoking a “Copy” command. The
copied text can then be pasted onto a word processing
application by invoking a “Paste” command.

By converting the text data into one or more images and
designating the one or more images as being protected, the
present invention can be used to prevent unauthorized
copying of text from a web page.

For another example, the present invention can be inte-
grated with transaction software so that protected images
can be purchased on-line. Specifically, when a user positions
a mouse pointer over a protected image and right clicks on
the mouse, a transaction menu can be popped up with one or
more selections for purchasing the protected image. Select-
ing an option to purchase the image can trigger e-commerce
transaction software. Thus when a user tries to save the
image using the standard “Save Image As . . . ” command,
he is notified that the image is copyright protected and
presented with an opportunity to purchase the image. Selec-
tions for purchasing the image can include purchasing one or
more hardcopy prints of the image, purchasing apparel, such
as clothing, containing the image, and purchasing an elec-
tronic version of the image.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made to the specific exemplary
embodiments without departing from the broader spirit and
scope of the invention as set forth in the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method for protecting digital images displayed in a
web browser, comprising:

displaying a digital image, the digital image comprising

pixel data;

issuing a request to access pixel data of the digital image

by invoking instructions for accessing pixel data;
intercepting the request to access pixel data of the digital
image; causing program logic of the instructions to
jump to logic for substitute instructions; and
providing substitute data for pixel data of the digital
image.

2. The method of claim 1 wherein said requesting access
is invoked by a keyboard.

3. The method of claim 1 wherein said requesting access
is invoked by a mouse.

4. The method of claim 1 wherein said requesting access
is invoked by a software application.

5. The method of claim 1 wherein said requesting access
uses a save-as command.

6. The method of claim 1 wherein said requesting access
uses a screen capture command.

7. The method of claim 6 wherein the screen capture
command is a Print Screen command.

8. The method of claim 1 wherein said requesting access
uses a copy command.

9. The method of claim 1 wherein said requesting access
usess a command for copying data to a clipboard.

10. The methods of claim 1 wherein the instructions are
a Windows BitBIt function.

11. A system for protecting digital images displayed in a
web browser, comprising:

a software application displaying a digital image, the

digital image comprising pixel data;

20

25

30

35

40

55

60

65

34

a command processor issuing a request to access pixel
data of the digital image by invoking instructions for
accessing pixel data;

a request interceptor intercepting the request to access
pixel data of the digital image received from said
command processor and causing program logic of the
instructions to jump to logic for substitute instructions;
and

a data processor providing substitute data for pixel data of
the digital image.

12. The system of claim 11 wherein said command

processor is invoked by a keyboard.

13. The system of claim 11 wherein said
processor is invoked by a mouse.

14. The system of claim 11 wherein said
processor is invoked by a software application.

15. The system of claim 11 wherein said
processor is invoked by a save-as command.

16. The system of claim 11 wherein said command
processor is invoked by a screen capture command.

17. The system of claim 16 wherein the screen capture
command is a Print Screen command.

18. The system of claim 11 wherein said command
processor is invoked by a copy command.

19. The system of claim 11 wherein said command
processor is invoked by a command for copying data to a
clipboard.

20. The system of claim 11 wherein the instructions are a
Windows BitBIt function.

21. A method for protecting digital images displayed in a
web browser, comprising:

displaying a digital image, the digital image comprising
pixel data;

issuing a request to access pixel data of the digital image
by invoking a Macintosh ToolBox function for access-
ing pixel data;

intercepting the request to access pixel data of the digital
image;

causing program logic of the Macintosh ToolBox function
to jump to logic for substitute instructions; and

providing substitute data for pixel data of the digital
image.

22. A method for protecting digital images displayed in a

web browser, comprising:

displaying a digital image, the digital image comprising
pixel data;

issuing a request to access pixel data of the digital image
by invoking instructions for accessing pixel data;

intercepting the request to access pixel data of the digital
image;

changing a pointer pointing to the instructions to point to
substitute instructions; and

providing substitute data for pixel data of the digital
image.

23. The method of claim 22 wherein the pointer is an entry

within a Macintosh Trap Dispatch Table.

24. The method of claim 22 wherein the substitute instruc-
tions are a patched Macintosh ToolBox function.

25. A method for protecting digital images displayed in a
web browser, comprising:

displaying a digital image, the digital image comprising
pixel data;

issuing a request to access pixel data of the digital image
by invoking instructions for accessing pixel data;

intercepting the request to access pixel data of the digital
image;

command

command

command

US 6,353,892 B2

35

executing substitute instructions; and

providing substitute data for pixel data of the digital
image.

26. The method of claim 25 wherein the instructions are

a Windows BitBlt function and the substitute instructions are
a patched Windows BitBlt function.

27. A system for protecting digital images displayed in a

web browser, comprising:

a software application displaying a digital image, the
digital image comprising pixel data;

a command processor issuing a request to access pixel
data of the digital image by invoking a Macintosh
ToolBox function for accessing pixel data;

a request interceptor intercepting the request to access
pixel data of the digital image received from said
command processor and causing program logic of the
Macintosh ToolBox function to jump to logic for sub-
stitute instructions; and

a data processor providing substitute data for pixel data of
the digital image.

28. A system for protecting digital images displayed in a

web browser, comprising:

a software application displaying a digital image, the
digital image comprising pixel data;

a command processor issuing a request to access pixel
data of the digital image by invoking instructions for
accessing pixel data;

15

20

36

a request interceptor intercepting the request to access
pixel data of the digital image received from said
command processor, and changing a pointer pointing to
the instructions to point to substitute instructions; and

a data processor providing substitute data for pixel data of
the digital image.

29. The system of claim 28 wherein the pointer is an entry

within a Macintosh Trap Dispatch Table.

30. The system of claim 28 wherein the substitute instruc-

tions are a patched Macintosh ToolBox function.

31. A system for protecting digital images displayed in a

web browser, comprising:

a software application displaying a digital image, the
digital image comprising pixel data;

a command processor issuing a request to access pixel
data of the digital image by invoking instructions for
accessing pixel data;

a request interceptor intercepting the request to access
pixel data of the digital image received from said
command processor and executing substitute instruc-
tions; and

a data processor providing substitute data for pixel data of
the digital image.

32. The system of claim 31 wherein the instructions are a

Windows BitBlt function and the substitute instructions are
a patched Windows BitBlt function.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,353,892 B2 Page 1 of 1
DATED : March 5, 2002
INVENTOR(S) : Daniel Schreiber and Andrew Goldman

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 33
Line 61, please replace “usess” with -- uses --.
Line 62, please replace “methods” with -- method --.

Signed and Sealed this

Twenty-seventh Day of August, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,353,892 B2 Page 1 of 1
APPLICATION NO. : 09/731544

DATED : March 5, 2002

INVENTORC(S) : Daniel Schreiber et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Beginning on page 1, Foreign Application Priority Data, section (30) please add:
--Jun. 14,1998 (IL) 124895 --

Beginning on page 18, column 1 line 4, please delete: “This application is a division of
commonly-owned U.S. application Ser. No. 09/397,331, filed on Sep. 14, 1999, entitled “Method and
System for Copyright Protection of Digital Images Transmitted Over Networks,” which is a
continuation-in-part of U.S. application Ser. No. 09/313,067, filed May 17, 1999, entitled “Methods
and Apparatus For Preventing Reuse of Text, Images And Software Transmitted Via Networks.”

and add

-- This application is a division of commonly-owned U.S. application Ser. No. 09/397,331,
now U.S. Pat. No. 6,298,446, filed on Sep. 14, 1999, entitled “Method and System for Copyright
Protection of Digital Images Transmitted Over Networks,” which claims priority to Israeli patents IL
127093, filed on Nov. 16, 1998, and IL. 127869, filed on Dec. 30, 1998, and is a continuation-in-part
of U.S. application 09/313,067, now U.S. Pat. No. 6,209,103, filed on May 17, 1999, entitled
“Methods And Apparatus For Preventing Reuse of Text, Images And Software Transmitted Via
Networks” which, in turn, claims priority to Israeli patent IL 124895, filed Jun. 14, 1998. --

Signed and Sealed this
Twenty-sixth Day of March, 2013

//42:2 / /éé P 9//:6(

et LA R

Teresa Stanek Rea
Acting Director of the United States Patent and Trademark Office

